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Organization
o Introduction to Bayesian Filtering
o Existing Algorithms
@ Proposed Solutions:
» Cubature Kalman Filtering

» Extension to Square-Root Cubature Kalman Filtering

o Example Application: Model-Based Signal Processing
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Bayesian Filtering: Introduction

Inputs

@ Hidden States
Messuremerta

Figure 1:

@ State-space model in discrete time:

» Process equation:
xr = f(xkg—1 & ui_1) + (Pro. noise)r_1 (1)
» Measurement equation:
zi, = h(xp & ug) + (Meas. noise)y (2)

@ Key Question: How do we recursively compute the posterior density of

the state xj, given the noisy measurements up to time k,

Z.l = {Zl, Zy, .. .Zk}?
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Conceptual Recursive Solution

o Time-update step using the C-K equation:
p(Xk|Z1:6-1) = / . p(Xk—1|Z1k—1)P(Xk|Xk—1)dXp—1 (3)
@ Measurement-update step using Bayes’ rule:
1
p(Xklz1k) = ap(xk|z1:k,1)p(zk|xk), (4)

where the normalizing constant

P(2k|Z1:k-1)

/R“ P(Xk|Z1:1—1)p(2k X1 ) dXR, (5)

Ck

and n, is the state-vector dimension.
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Approximate Solutions: Two Approaches

@ Moment-closing algorithms:
» Kushner’s nonlinear Bayesian filter (IEEE Trans. AC, 2000)
» Grid filters
» Particle filters
(Gordon, Salmond & Smith, 1993)
o Innovations-based algorithms:
» Extended Kalman filter
(Schmidt, 1961)
» Unscented Kalman filter
(Julier, Ulhmann & Durrant-Whyte, 2000)
» Central Difference Kalman filter
(Norgaard, Poulson & Ravn, 2000)
» Gauss-Hermite quadrature filter
(Ito & Xiong, 2000)

@ Problem statement: Develop an approximate BF that is theoretically
motivated, reasonably accurate and easily extendable at a minimal cost.
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Cubature Kalman Filtering

o Tradeoff global optimality for computational tractability and robustness.

o Key assumption: Represent the joint state-innovations density given the
past measurement history as Gaussian.

@ New problem: Compute integrals whose integrands are of the form:

Nonlinear function x Gaussian

@ The monomial-based cubature rule is chosen as a ‘good’ candidate for

numerical computations!
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Transformation to Spherical-Radial Integration
o Integral of interest:
) = /R f(x)oxp(—x"x)dx ()

o Key step: Transform I(.) in the Cartesian coordinate into the
spherical-radial coordinate.

@ We may thus write the radial integral
I. = /000 S(r)r"texp(—r?)dr (7)
where S(r) is defined by the spherical integral
s0) = [ tyyoty) (¥

with o(.) is the spherical surface measure on the region

Up = {yeR'y'y=1}
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Monomial-based Cubature Rules

o Fix the degree of the target cubature rule to be three.

@ The 3rd degree monomial-based cubature rule for spherical integration:

/ f(rs)do(s Zws ul;. 9)

@ The 1st degree quadrature rule for radial integration:

(oo}
|t ten-rtar & e, (10)
0
@ The resulting 3rd degree spherical-radial cubature rule is written as
2n
f(x)exp(—xTx)dx =~ wswr T([zrul;). 11
Rn()p( ) ;sr([r]z) (11)

d &
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Square-Root Filtering for Reliability

o Key idea: Reformulate the CKF so as to propagate the square-roots of
covariances
o Why?
» Preserves symmetry and positive (semi)definiteness
> Improves numerical accuracy due to k5 = \/kp

» Doubles the order of precision
» Makes square-roots available

o How do we do this?

» Use triangular factorization (e.g., QR decomposition) for covariance
updates
» Replace matrix inversion with forward (backward) substitution

o Cost: 60% more computations!
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Hallmark Properties of the (Square-root) CKF

@ Property 1: Derivative-free
@ Property 2: The number of function evaluations increases linearly with n,
@ Property 3: Computational cost grows cubically w.r.t. n,

@ Property 4: Extraction of second-order information of the hidden state
embedded in the measurements at best

o Property 5: Approximation to the Bayesian filter that closely inherits the
properties of the linear Kalman filter including square-root filtering for
improved reliability in limited word-length systems
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Model-based Signal Processing

o Goal: Given a set of noisy observations, build an empirical model for the
following purposes:

» To denoise a test signal—- signal enhancement
» To statistically decide whether the denoised test signal belongs to the
empirical model— signal detection

o Experimental Setup:

» Use the chaotic Mackey-Glass system to generate training and tests data
» Perturb with noise such that the SNR was set to be 3dB
» Model the system using the 7-5R-1 recurrent neural network

@ Methodology:

» Enhance the signal using cooperative cubature filtering
» Detect the signal based on the innovations statistic
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CKF-based Cooperative Filtering

uy,

Figure 2: TU- Time Update, MU- Measurement Update, SE- Signal Estimator, WE-
Weight Estimator
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Representative Denoised Signals
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Figure 3: Representative test signal Vs. time step (thick- clean, dotted thin- Filter

estimate, x- noisy measurements).
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Cooperative Filtering Results

1 2 3 4 5 6 7 8 9 10 1 2 3 4 6
Number of epochs Number of epochs
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Figure 4: Ensemble-averaged (over 50 runs) Mean Squared Error (MSE) Vs. number
of epochs (x- EKF, filled circle- CKF).
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Signal Detection Using the NIS Statistic

@ Consider the detection index to be the normalized innovations squared

(NIS), which is defined at time & as:

e = 2k —Zyp] Pl (26 — Zrppa]

@ Under the Gaussian assumption, € is x2-distributed:

2
€k~ Xn,

o Compute 95% confidence interval to accept/reject the detection
hypothesis
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Signal Detection Results

A

ol

NIS

05 . . . .
10 20 30 40 50 60 70

Test window index

Figure 5: x- EKF, filled circle- CKF, dotted thick- 95% confidence intervals
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