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Organization
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Existing Algorithms
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◮ Cubature Kalman Filtering
◮ Extension to Square-Root Cubature Kalman Filtering
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Bayesian Filtering: Introduction

Figure 1:

State-space model in discrete time:

◮ Process equation:

xk = f(xk−1 & uk−1) + (Pro. noise)k−1 (1)

◮ Measurement equation:

zk = h(xk & uk) + (Meas. noise)k (2)

Key Question: How do we recursively compute the posterior density of

the state xk, given the noisy measurements up to time k,

z1:k = {z1, z2, . . . zk}?
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Conceptual Recursive Solution

Time-update step using the C-K equation:

p(xk|z1:k−1) =

∫

R
nx

p(xk−1|z1:k−1)p(xk|xk−1)dxk−1 (3)

Measurement-update step using Bayes’ rule:

p(xk|z1:k) =
1

ck

p(xk|z1:k−1)p(zk|xk), (4)

where the normalizing constant

ck = p(zk|z1:k−1)

=

∫

R
nx

p(xk|z1:k−1)p(zk|xk)dxk (5)

and nx is the state-vector dimension.
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Approximate Solutions: Two Approaches

Moment-closing algorithms:

◮ Kushner’s nonlinear Bayesian filter (IEEE Trans. AC, 2000)
◮ Grid filters
◮ Particle filters

(Gordon, Salmond & Smith, 1993)

Innovations-based algorithms:

◮ Extended Kalman filter

(Schmidt, 1961)
◮ Unscented Kalman filter

(Julier, Ulhmann & Durrant-Whyte, 2000)
◮ Central Difference Kalman filter

(Norgaard, Poulson & Ravn, 2000)
◮ Gauss-Hermite quadrature filter

(Ito & Xiong, 2000)

Problem statement: Develop an approximate BF that is theoretically

motivated, reasonably accurate and easily extendable at a minimal cost.
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Cubature Kalman Filtering

Tradeoff global optimality for computational tractability and robustness.

Key assumption: Represent the joint state-innovations density given the

past measurement history as Gaussian.

New problem: Compute integrals whose integrands are of the form:

Nonlinear function × Gaussian

The monomial-based cubature rule is chosen as a ‘good’ candidate for

numerical computations!
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Transformation to Spherical-Radial Integration

Integral of interest:

I(f) =

∫

Rn
f(x)exp(−xT x)dx (6)

Key step: Transform I(.) in the Cartesian coordinate into the

spherical-radial coordinate.

We may thus write the radial integral

Ir =

∫ ∞

0

S(r)rn−1exp(−r2)dr (7)

where S(r) is defined by the spherical integral

S(r) =

∫

Un

f(ry)dσ(y) (8)

with σ(.) is the spherical surface measure on the region

Un = {y ∈ R
n| yT y = 1}
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Monomial-based Cubature Rules

Fix the degree of the target cubature rule to be three.

The 3rd degree monomial-based cubature rule for spherical integration:

∫

Un

f(rs)dσ(s) ≈

2n∑

i=1

ωsf [u]i. (9)

The 1st degree quadrature rule for radial integration:

∫ ∞

0

f(r)rn−1exp(−r2)dr ≈ ωrf(xr). (10)

The resulting 3rd degree spherical-radial cubature rule is written as

∫

Rn

f(x)exp(−xTx)dx ≈

2n∑

i=1

ωsωr
︸ ︷︷ ︸

ω

f([xru]i
︸ ︷︷ ︸

ξi

). (11)
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Square-Root Filtering for Reliability

Key idea: Reformulate the CKF so as to propagate the square-roots of

covariances

Why?

◮ Preserves symmetry and positive (semi)definiteness
◮ Improves numerical accuracy due to κ√

P
=

√

κP

◮ Doubles the order of precision
◮ Makes square-roots available

How do we do this?

◮ Use triangular factorization (e.g., QR decomposition) for covariance

updates
◮ Replace matrix inversion with forward (backward) substitution

Cost: 60% more computations!
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Hallmark Properties of the (Square-root) CKF

Property 1: Derivative-free

Property 2: The number of function evaluations increases linearly with nx

Property 3: Computational cost grows cubically w.r.t. nx

Property 4: Extraction of second-order information of the hidden state

embedded in the measurements at best

Property 5: Approximation to the Bayesian filter that closely inherits the

properties of the linear Kalman filter including square-root filtering for

improved reliability in limited word-length systems
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Model-based Signal Processing

Goal: Given a set of noisy observations, build an empirical model for the
following purposes:

◮ To denoise a test signal– signal enhancement
◮ To statistically decide whether the denoised test signal belongs to the

empirical model– signal detection

Experimental Setup:

◮ Use the chaotic Mackey-Glass system to generate training and tests data
◮ Perturb with noise such that the SNR was set to be 3dB

◮ Model the system using the 7-5R-1 recurrent neural network

Methodology:

◮ Enhance the signal using cooperative cubature filtering
◮ Detect the signal based on the innovations statistic
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CKF-based Cooperative Filtering

Figure 2: TU- Time Update, MU- Measurement Update, SE- Signal Estimator, WE-

Weight Estimator
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Representative Denoised Signals
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Figure 3: Representative test signal Vs. time step (thick- clean, dotted thin- Filter

estimate, x- noisy measurements).
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Cooperative Filtering Results
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Figure 4: Ensemble-averaged (over 50 runs) Mean Squared Error (MSE) Vs. number

of epochs (x- EKF, filled circle- CKF).
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Signal Detection Using the NIS Statistic

Consider the detection index to be the normalized innovations squared

(NIS), which is defined at time k as:

ǫk = [zk − ẑk|k−1]
T P−1

zz,k|k−1
[zk − ẑk|k−1]

Under the Gaussian assumption, ǫk is χ2-distributed:

ǫk ∼ χ
2

nz

Compute 95% confidence interval to accept/reject the detection

hypothesis
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Signal Detection Results
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Figure 5: x- EKF, filled circle- CKF, dotted thick- 95% confidence intervals
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Thank you!
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