
1

1
Nonlinear Sequential State Estimation for Solving
Pattern-Classification Problems

Simon Haykin and Ienkaran Arasaratnam
McMaster University
Canada

1.1
Introduction

Sequential state estimation has established itself as one of the essential elements of
signal processing and control theory. Typically, we think of its use being confined
to dynamic systems, where we are given a set of observables and the requirement is
to estimate the hidden state of the system on which the observables are dependant.
However, when the issue of interest is that of pattern-classification (recognition), we
usually do not think of sequential estimation as a relevant tool for solving such prob-
lems. Perhaps, this oversight may be attributed to the fact that pattern-classification
machines are usually viewed as static rather than dynamic systems. In this chapter, we
take a different view:

Specifically, we look to nonlinear sequential state estimation as a tool for solving
pattern-classification problems, where the problem is solved through an iterative super-
vised learning process.
In so doing, we demonstrate that this approach to solving pattern-classification problems
offers several computational advantages compared to traditional methods, particularly
when the problem of interest is a difficult one.

The chapter is structured as follows: Section II briefly discusses the back-propagation
(BP) algorithm and support-vector machine (SVM) learning as two commonly used
procedures for pastern classification; these two approaches are used later in this chap-
ter as a framework for experimental comparison with the sequential state-estimation
approach for pattern-classification. Section III describes how the idea of nonlinear se-
quential state estimation can be used as supervised training of a multilayer perceptron.
With the material of Section III at hand, the stage is set for specializing the well-known
extended Kalman filter (EKF) for the supervised training of a multilayer perceptron in
Section IV. Section V describes a difficult pattern-classification task, which is used as a

Please enter \copyrightinfo{Title, Edition}{Author/Editor}{ISBN number}
at the beginning of your document.

2 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

basis for comparing the EKF algorithm with the BP and SVM algorithms. The chapter
concludes with a summary and discussion in Section VI.

1.2
Back-propagation and support vector machine-learning algorithms: A Re-
view

In this section, we review two commonly used pattern-classification algorithms, namely,
the back-propagation algorithm for the supervised training of multilayer perceptrons
and the support vector machine for radial basis function (RBF) networks. The reason for
including this review in the chapter is essentially to describe the two frameworks against
which a pattern-classifier trained with the extended Kalman filter will be compared later
on in the chapter.

1.2.1
Back-propagation learning

Basically, the back-propagation (BP) algorithm is an error-correction algorithm, pro-
viding a generalization of the ubiquitous least-mean squares (LMS) algorithm. As such,
the BP algorithm has many of the attributes associated with LMS algorithm, when it is
implemented in the stochastic (supervised) mode of learning:

– simplicity of implementation;

– computational complexity, linear in the number of weights; and

– robustness

Most importantly, the BP algorithm is not an algorithm intended for the optimal su-
pervised training of a multilayer perceptron. Rather, it is an algorithm for computing
the partial derivatives of a cost function with respect to prescribed set of adjustable
parameters [1].

Speaking of the multilayer perceptron (MLP), Figure 1.1 depicts the architectural
graph of this neural network, which has two hidden layers and an output layer consisting
of three computational units. Figure 1.2 depicts a portion of the MLP, in which two
kinds of signals are identified in the network:

1. Function Signals. A functional signal is an input signal (stimulus) that comes in
at the input end of the network, propagates forward neuron by neuron through
the network, and emerges at the output end of the network as an output signal.
We refer to such a signal as a “functional signal” for two reasons: First, it is
presumed to perform a useful function at the output of the network. Second, at
each neuron of the network through which a function signal passes, the signal
is calculated as a function of the inputs and the associated weights applied to
that neuron. The function signal is also referred to as the input signal.

1.2 Back-propagation and support vector machine-learning algorithms: A Review 3

Input

signal

Output

signal

Input

layer

First hidden

layer

Second hidden

layer

Output

layer

Fig. 1.1 Architectural graph of a multilayer perceptron with two hidden layers.

2. Error Signals. An error signal originates at the output neuron of the network
and propagates backward (layer by layer) through the network. We refer to
the signal as an “error signal” because its computation by every neuron of the
network involves an error-dependant function in one form or another.

The output neurons constitute the output layer of the network. The remaining neurons
constitute hidden layers of the network. Thus, the hidden units are not part of the output
or input of the network– hence their designation as “hidden”. The first hidden layer is
fed from the input layer made up of sensory units (source nodes); the resulting outputs
of the first hidden layer are in turn applied to the next hidden layer; and so on for the
rest of the network.

Each hidden or output neuron of a MLP is designed to perform two computations:

1. the computation of the function signal appearing at the output of each neuron,
which is expressed as a continuous nonlinear function of the input signal and
synaptic weights associated with that neuron;

2. the computation of an estimate of the gradient vector (i.e., the gradients of the
error surface with respect to the weights connected to the inputs of a neuron),
which is needed for the backward pass thorough the network.

The hidden neurons act as feature detectors; as such, they play a critical role in he
operation of a MLP. As the learning process progresses across the MLP, the hidden
neurons begin to gradually discover the salient features that characterize the training

4 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

Function Signal

Error Signal

Fig. 1.2 Illustration of the directions of two basic signal flows in a
MLP: forward propagation of function signals and back
propagation of error signals.

data. They do so by performing a nonlinear transformation on the input data into a
new space called the feature space. In this new space, the classes of interest in a
pattern-classification task, for example, may be more easily separated form each other
than could be the case in the original input data space. Indeed, it is the formation of this
feature space through supervised learning that distinguishes the MLP from Rosenblatt’s
perceptron.

As already mentioned, the BP algorithm is an error-correction learning algorithm,
which proceeds in two phases:

1. In the forward phase, the synaptic weights of the network are fixed, and the
input signal is propagated through the network, layer by layer, until it reaches
the output. Thus, in this phase, changes are confined to activation potentials
and outputs of the neurons in the network.

2. In the backward phase, an error signal is produced by comparing the output of
the network with a desired response. The resulting error signal is propagated
through the network, again layer by layer, but this time the propagation is per-
formed in the backward direction. In this second phase, successive adjustments
are made to the synaptic weights of the network. Calculation of the adjustments
of the output layer is straightforward, but it is more challenging for the hidden
layers.

1.2 Back-propagation and support vector machine-learning algorithms: A Review 5

1.2.2
Support vector machine

The support vector machine (SVM) is basically a binary classification machine with
some highly elegant properties. It was pioneered by Vapnik and the first description
was presented in [3]. Detailed descriptions of the machine are presented in [1, 2].

Unlike the BP algorithm, supervised training of the SVM looks to optimization the-
ory for its derivation. To develop insights into SVM theory, formulation of the learning
algorithm begins with the simple case of a simple pair of linearly separable patterns. In
such a setting, the objective is to maximize the margin of separation between the two
classes, given a set of training data made up of “input vector-desired response” pairs.
Appealing to statistical learning theory, we find that maximization of the margin of
separation is equivalent to minimizing the Euclidean norm of the adjustable parameter
vector. Building on this important finding, the optimization design of a linearly sep-
arable pattern-classifier is formulated as a constrained convex optimization problem,
expressed in words as follows:

Minimize the sequence of the adjustable parameter vector of a linearly separable
pattern-classifier, subject to the constraint that the parameter vector satisfies the super-
visory training data.
Hence, in mathematical terms, the objective function is expressed as a Lagrange func-
tion where the lagrange multiplier constitute a set of auxiliary nonnegative variables
equal in number to the training sample size. There are three important points that
emerge form differentiating the Lagrangian function with respect to the adjustable
parameters, including a bias term:

1. The Lagrange multipliers are divided into two sets: one zero, and the other
non-zero.

2. The equality constraints are satisfied only by those Lagrange multipliers that
are non-zero in accordance with the Karush-Kuhn-Turker (KKT) conditions of
convex optimization theory.

3. The supervisory data points for which the KKT conditions are satisfied are
called support vectors, which, in effect, define those data points that are the
more difficult to classify. In light of this third point, the training data set is said
to be sparse in the sense that only a fraction of them defines the boundaries of
the margin of separation.

Given such a combined convex optimization problem, it is possible to construct
another problem called the dual problem. Naturally, this second problem has the same
optimal value as the primal problem (i.e., the original optimization problem), but with
an important difference:

The optimal solution to the primal problem is expressed in terms of free network
parameters, whereas the Lagrange multipliers provide the optimal solution to the dual
problem.
This statement is of profound practical importance for it teaches us that the decision
boundary for the linearly separable pattern-classification problem can be computed

6 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

without having to find the optimal value of the parameter vector. To be more specific,
the objective function to be optimized in the dual problem takes the following form:

Q(α) =

N∑
i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjdidjx
T
i xj (1.1)

subject to the constraints:

N∑
i=1

αidi = 0

αi ≥ 0 fori = 1, 2, . . . N,

where αi in (1.1) are the Lagrange multipliers, and the training data sample is denoted
by {xi, di}N

i=1 with xi denoting an input vector, di denoting the corresponding desired
response, and N denoting the sample size.

Careful examination of (1.1) reveals essential ingredients of SVM learning, namely,
the requirement to solve a quadratic programming problem, which can become a
difficult proposition to execute in computational terms, particularly when the sample
size N is large.

What we have addressed thus far is the optimal solution to a linearly separable
pattern-classification problem. To extend the SVM learning theory to the more difficult
case of nonseparable pattern-classification problems, a set of variables called slack
variables are introduced into the convex optimization problem; these new variables
measure the deviation of a point from the ideal condition of perfect pattern separability.
It turns out that in mathematical terms, the impact of slack variables is merely to modify
the second constraint in the dual optimization problem described in (1.1) as follows:

0 ≤ αi ≤ C for i = 1, 2, . . . N,

where C is a user-specified positive parameter. Except for this modification, formula-
tion of the dual optimization problem for nonseparable pattern-classification problems
remains intact. Moreover, the support vectors are defined in the same way as before.
The new parameter C controls the tradeoff between complexity of the machine and the
number of nonseparable patterns; it may therefore be viewed as the reciprocal of a pa-
rameter commonly refereed to the “regularization” parameter. When the parameter C

is assigned a large value, the implication is that there is high confidence in the practical
quality of the supervisory training data. Conversely, when C is assigned a small value,
the training data sample is considered to be noisy, suggesting that less emphasis should
be placed in its use and more attention be given to the adjustable parameter vector.

Thus far in the discussion, we have focussed attention on an algorithmic formulation
of the SVM. Clearly, we need a network structure for its implementation. In this
context, the radial-basis function (RBF) provides a popular choice. Figure 1.3 depicts
a structure of a RBF network, in which the nonlinear hidden layer of size K (smaller
than the sample size N) consists of Gaussian units; nonlinearity of the hidden layer
is needed to account for nonseparability of the input patterns. Each Gaussian unit is
defined in terms of its m-dimensional center, where m is the dimensionality of the
input data space. To complete the specifications of the hidden layer, we need to also

1.2 Back-propagation and support vector machine-learning algorithms: A Review 7

Input

vector

Input layer

of size mo
Feature layer

of m1 inner-

product kernels

Output

neuron

Linear

weights

Bias

Output

y

b

Fig. 1.3 Architecture of support vector machine, using a radial basis function network.

define the effective width of each Gaussian function acting as a “receptive field”. To
simplify the network design, it is common practice to assign a common width to all
the Gaussian units. As for the output layer, it is linear with m1 adjustable parameters
w1, w2, . . . wm1 , and an adjustable bias.

To propose an application of the SVM algorithm to the RBF structure of Figure 1.3,
we keep the following points in mind:

1. The support vectors picked out of the supervisory training data by the SVM
algorithm define the centers of the Gaussian units in the hidden layer.

8 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

2. The outputs of the Gaussian units, produced in response to the data applied to
the source (input) nodes of the RBF network, define the inputs applied to the
adjustable parameters. In effect, xi in (1.1) is now replaced by the vector

Φ(xi) = [Φ(xi, x̄1), Φ(xi, x̄2), . . . Φ(xi, x̄k)]T , (1.2)

where {x̄j}K
j=1 denotes the set of support vectors computed by the SVM algo-

rithm. Thus, using (1.2) in (1.1), we see that the inner product xT
i xj in (1.1) is

replaced by the new inner product

k(xi,xj) = ΦT (xi)Φ(xj), (1.3)

which is called the Mercer kernel. This terminology follows from the fact that
the functions assigned to the hidden units of the RBF network must satisfy the
celebrated Mercer’s theorem, which is indeed satisfied by the choice of Gaussian
functions. Equation (1.3) provides the basis for the kernel trick, which states
the following:

Insofar as pattern-classification in the output space of the RBF network
is concerned, specification of the Mercer kernel k(xi,xj) is sufficient, the
implication of which is that there is no need to explicitly compute the adjustable
parameters of the output layer.
For this reason, a network structure exemplified by the RBF network, is referred
to as a kernel machine and the SVM learning algorithm used to train it is referred
to as a kernel method.

1.3
Supervised Training framework of MLPs using nonlinear sequential state
estimation

To describe how a nonlinear sequential state estimator can be used to train a MLP in a
supervised manner, consider a MLP with s synaptic weights and p output nodes. With
n denoting a time-step in the supervised training of the MLP, let the vector wn denote
the entire set of synaptic weights in the MLP computed at time step n. For example, we
may construct wn by stacking the weights associated with neuron 1 in the first hidden
layer on top of each other, followed by those of neuron 2, carrying on in this manner
until we have accounted for all the neurons in the first hidden layer; then we do the
same for the second and any other hidden layer in the MLP, until all the weights in the
MLP have been accounted for in the vector wn in the orderly fashion just described.

With sequential state estimation in mind, the state-space model of the MLP under
training is defined by the following pair of models (see Figure 1.4):

1. System (state) model, which is described by the first-order autoregressive equa-
tion

wn+1 = wn + ωn (1.4)

1.4 The Extended Kalman Filter 9

Network

Nonlinearity

Input vector

Weight (state)

vectorDynamic noise Observable

Measurement

Noise

+

+ +

+

Fig. 1.4 Nonlinear state-space model depicting the underlying
dynamics of a MLP undergoing supervised training.

The dynamic noise ωn is white Gaussian noise of zero mean and covariance
matrix Qn which is purposely included in the system model to anneal the
supervised training of the MLP over time. In the early stages of the training
session Qn is large in order to encourage the supervised-learning algorithm to
escape local minima, then it is gradually reduced to some finite but small value.

2. Measurement model, which is described by the equation

dn = b(wn,un) + vn (1.5)

where the new entities are defined as follows:

– dn is the observable

– un is the vector denoting the input signal applied to the network.

– vn is the vector denoting the measurement noise process of zero mean and
diagonal covariance matrix Rn. The source of this noise is attributed to the
way in which dn is actually obtained.

The vector-valued measurement function b(., .) in (1.5) accounts for the overall
nonlinearity of the MLP from the input to the output layer; it is the only source
of nonlinearity in the state-space model of the MLP. Here, the notion of state
refers to an externally adjustable state, which manifests itself in adjustments
applied applied to the MLP’s weights through supervised training- hence the
inclusion of the weight vector wn in the state-space model described by both
(1.4) and (1.5).

1.4
The Extended Kalman Filter

Given the training sample {un,dn}N
n=1, the issue of interest is how to undertake the

supervised training of the MLP by means of a sequential state estimator. Since the MLP

10 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

is nonlinear by virtue of of the nonlinear measurement model of (1.5), the sequential
state estimator would have to be correspondingly nonlinear. With this requirement in
mind, we begin the discussion by considering how the extended Kalman filter (EKF)
can be used to fulfil this rule.

For the purpose of our present discussion, the relevant equations of the EKF algorithm
summarized in Table 1 are the following two, using the terminology of state-space model
of (1.4) and (1.5):

1. the innovations process, defined by

αn = dn − b(ŵn|n−1,un) (1.6)

where the desired response dn plays the role of the “observable” for the EKF;

2. the weight (state) update, defined by

ŵn|n = ŵn|n−1 + Gnαn (1.7)

where ŵn|n−1 is the predicted (old) state estimate of the MLP’s weight vector
w at time n, given the desired response up to and including time (n − 1), and
ŵn|n is the filtered (updated) estimate of w on the receipt of observable dn. The
matrix Gn is the Kalman gain, which is an integral part of the EKF algorithm.

Summary of the EKF algorithm for Supervised Training of the MLP
Training sample: {un,dn}, n = 1, 2, . . . N
where un is the input vector applied to the MLP and dn is the corresponding desired
response.
MLP and Kalman filter: Parameters and Variables

b(., .) : vector-valued measurement function

B : linearized measurement matrix

wn : weight vector at time step n

ŵn|n−1 : predicted estimate of the weight vector

ŵn|n : filtered estimate of the weight vector

yn : output vector of the MLP produced in response to un

Qn : covariance matrix of dynamic noise ωn

Rn : covariance matrix of measurement noise vn

Gn : Kalman gain

Pn|n−1 : prediction error covariance matrix

Pn|n : filtering error covariance matrix

Initialization: The initial weights ŵ1|0 are drawn from a uniform distribution with
zero mean and variance equal to the reciprocal of the number of synaptic connections
feeding into a node (fan-in). The associated covariance of the initial weight estimate is
fixed at δI, where δ can be ‘some’ multiples of 10, and I is the identity matrix.

1.4 The Extended Kalman Filter 11

Recursive computation:
For n = 1, 2, . . . compute the following:

Gn = Pn|n−1B
T
n [BnPn|n−1B

T
n + Rn]−1

αn = dn − bn(ŵn|n−1,un)

ŵn|n = ŵn|n−1 + Gnαn

Pn|n = Pn|n−1 −GnBnPn|n−1

ŵn+1|n = ŵn|n
Pn+1|n = Pn|n + Qn

Examining the underlying operation of the MLP, we find that the term b(ŵn|n−1,un)
is the actual output vector yn produced by the MLP with its old weight vector ŵn|n−1

in response to the input vector un. We may therefore rewrite the combination of (1.6)
and (1.7) as a single equation:

ŵn|n = ŵn|n−1 + Gn(dn − yn) (1.8)

On the basis of this insightful equation, we may now depict the supervised training of the
MLP as the combination of two mutually coupled components forming a closed-loop
feedback system, as shown in Figure 1.5:

1. The top part of the figure depicts the supervised learning process as viewed
partly from the network’s perspective. With the weight vector set at its old
(predicted) value ŵn|n−1, the MLP computes the actual weight vector yn as
the predicted estimate of the observable– namely d̂n|n−1.

2. The bottom part of the figure depicts the EKF in its role as the facilitator of
the training process. Supplied with d̂n|n−1 = yn, the EKF updates the old
estimate of the weight vector by operating on the current desired response dn.
The filtered estimate of the weight vector, namely, ŵn|n, is thus computed
in accordance with (1.8). The EKF supplies ŵn|n to the MLP via a bank of
unit-time delays.

With the transition matrix being equal to the identity matrix, as evidenced by (1.4),
we may set ŵn+1|n equal to ŵn|n for the next iteration. This equality permits the
supervised training cycle to be repeated until the training session is completed.

Note that in the supervised training framework of Figure 1.5, the training sample
(un,dn) is split between the MLP and the EKF:

The input vector un is applied to the MLP as the excitation, and the desired response
dn is applied to the EKF as the observable, which is dependant on the hidden weight
(state) vector wn.
From the predictor-corrector property of the Kalman filter and its variants and exten-
sions, we find that examination of the block diagram of Figure 1.5 leads us to make the
following insightful statement:

The multilayer perceptron, undergoing training, performs the role of the predictor,
and the EKF, providing the supervision, performs the role of the corrector.

12 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

MLP :

Weight vector

Bank of unit-time delays

EKF: Predicted response

Input

vector

Desired

response

Training

sample

Actual

output

Fig. 1.5 Closed-loop feedback system embodying the MLP and
the EKF: (a) The MLP, with weight vector ŵn|n−1, operates on
the input vector un to produce the output vector yn (b) The EKF,
supplied with the prediction d̂n|n−1 = yn, operates on the
current desired response dn to produce the filtered weight
estimate ŵn|n thereby preparing the closed-loop feedback
system for the next iteration.

Thus, whereas in traditional applications of the Kalman filter for sequential state esti-
mation, the roles of the predictor and corrector are embodied in the Kalman filter itself,
in supervised training applications these two roles are split between the MLP and the
EKF. Such a split of responsibilities in supervised learning is in perfect accord with
the way in which the input and the desired response of the training sample are split in
Figure 1.5.

1.4.1

1.5 Experimental comparison of the extended Kalman filtering algorithm with the back-propagation and support vector machine learning algorithms 13

The EKF Algorithm

For us to be able to apply the EKF algorithm as the facilitator of the supervised learning
task, we have to linearize the measurement equation (1.5) by retaining first order terms
of the Taylor series expansion of the nonlinear part of the equation. With b(wn,un)
as the only source of nonlinearity, we may approximate (1.5) as

dn = Bnwn + vn, (1.9)

whereBn is the p−by−s measurement matrix of the linearized model. The linearization
process involves computing the partial derivatives of the p outputs of the MLP with
respect to its s weights, obtaining the required matrix

B =




∂b1
∂w1

∂b1
∂w2

. . . ∂b1
∂ws

∂b2
∂w1

∂b2
∂w2

. . . ∂b2
∂ws

...
...

...
...

∂bp

∂w1

∂bp

∂w2
. . .

∂bp

∂ws




, (1.10)

where bi, i = 1, 2, . . . p, in (1.10) denotes the i-th element of the vectorial function
b(., .), and the partial derivatives on the right-hand side of (1.10) are evaluated at
wn = ŵn|n−1. Recognizing that the dimensionality of the weight vector w is s, it
follows that the matrix product Bw is a p−by−1 vector, which is in agreement with
the dimensionality of the observable d.

1.5
Experimental comparison of the extended Kalman filtering algorithm with
the back-propagation and support vector machine learning algorithms

In this section, we consider a binary class classification problem as shown in Fig-
ure 1.7(a). It consists of three concentric circles of radii 0.3, 0.8, and 1. It is a
challenging problem because the two regions are disjoint and non-convex. For the
experiment, we used the following supervised training algorithms:

– MLP trained by the BP;

– MLP trained by the EKF; and

– SVM

The structure of the MLP was chosen to have two inputs, one output, and two hidden
layers, with five neurons each. Hence, the MLP has a total of 51 adjustable parameters
or weights (bias included). All neurons use the hyperbolic tangent function of the form:

ϕ(υ) = tanh(υ) =
exp(υ)− exp(−υ)

exp(υ) + exp(−υ)

The learning-rate parameter of the back-propagation algorithm was fixed at 0.01. For
the MLPs trained by the BP and the EKF, the initial weights were set up as described

14 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

in Section IV. For the EKF, two more covariance matrices were additionally required
to set up:

1. The covariance matrix of dynamic noise Qn was annealed such that Qn =

(1
λ
− 1)Pn|n, where Pn|n was the error covariance associated with the weight

estimate at time instant n, and λ ∈ (0, 1) is the “forgetting factor” as defined
in a recursive least-squares algorithm; this approximately assigns exponentially
decaying weights to past observables; λ was fixed at 0.9995.

2. The variance of measurement noise Rn was fixed at unity.

For the SVM, the kernel was chosen to be the Gaussian radial-basis function. A
kernel width of σ = 0.2 was found to be a good choice for this problem. This value
was chosen based on the accuracy of test classification results. The soft margin of
unity was found to be more appropriate for this problem. The quadratic programming
code, available as an in-built routine in the MATLAB optimization toolbox, was used
for training the SVM.

For the purpose of training 1000 data points were randomly picked from the con-
sidered region. In the MLP-based classification, each training epoch contained 100
examples randomly drawn from the training data set. For the purpose of testing, the
test data were prepared as follows: A grid of 100× 100 data points were chosen from
the square region [−1, 1] × [−1, 1] (see Figure 1.7(a)) and then the grid points falling
outside the unit circle were discarded. In so doing, we were able to obtain 7825 test
points.

At the end of every 10 training epoch interval, the MLP was presented with the test
data set. We made 50 such independent experiment trials and the ensemble-averaged
correct classification rate was computed. In contrast, for the SVM, this test grid was
presented at the end of the training. Figures 1.6(a) and 1.6(b) show the results of the
BP-trained MLP and the EKF-trained MLP, respectively. At the end of 5000 training
epochs, we found that:

the BP-trained MLP achieves nearly 90% classification accuracy; whereas, at the
end of 200 training epochs, the EKF-trained MLP achieves nearly 96% classification
accuracy.
Figures 1.7(b)-1.7(d) depict a representative test classification results of the employed
algorithms.

We also computed the computational times of each algorithm averaged over 50
independent trials when executing on an Intel Pentium Core Duo processor of cycle
speed 2.1GHz. The summarized results are tabulated in Table I. To execute 5000 epochs
of the BP, roughly a minute is required, whereas, the EKF requires only 8 seconds for
completing its 200 training epochs. As expected, the SVM takes more time (nearly 3
minutes) to complete its training.

Based on the computational time-accuracy tradeoff, we may say that the EKF-trained
MLP is the best choice for solving the difficult binary pattern-classification problem
illustrated by Figure 1.7(a).

1.6

1.6 Concluding Remarks 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
50

55

60

65

70

75

80

85

90

95

Number of Epochs

C
or

re
ct

 C
la

ss
ifi

ca
tio

n
(%

)
(a) Backprop

0 50 100 150 200
80

82

84

86

88

90

92

94

96

98

Number of Epochs

C
or

re
ct

 C
la

ss
ifi

ca
tio

n
(%

)

(b) EKF

Fig. 1.6 Ensemble-averaged (over 50 runs) correct classification rate Vs. number of epochs

Concluding Remarks

In the neural networks and learning machines literature, the solution to pattern-
classification problems is commonly tackled, for example, by using a multilayer per-
ceptron (MLP) trained with the back-propagation algorithm or a radial-basis function
(RBF) network using the support-vector machine (SVM) learning algorithm [1]. In this
chapter, we have discussed another way of tackling the pattern-classification problem,
namely a multilayer perceptron trained using the extended Kalman filter (EKF). The
rationale for this unusual approach is that the supervised learning process involving in
the training of multilayer perceptron may be viewed as a state-estimation problem, in

16 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

Algorithm Test accuracy Time (s)

BP 90% 63s
EKF 96% 8s
SVM 96% 182s

Table 1.1 Comparison of classification accuracy and
computational times averaged over 50 independent experiments

which case the weight vector characterizing the multilayer perceptron is viewed as a
hidden state. An attracting feature of using the EKF for estimating the unknown weight
vector is the improved utilization of the information contained in the training sample by
propagating the covariance matrix of the filtered estimation error, hence the accelerated
rate of learning. This point is borne out by shorter time taken to complete the learning
process, compared to both the BP and SVM algorithms. Moreover, the experimental
results presented in Section V show that the EKF approach to supervised training of a
multilayer perceptron achieves a pattern-classification accuracy that matches the results
obtainable with the SVM.

To conclude, we may say that the supervised training of a multilayer perceptron
using the EKF as the tool to oversee the supervision deserves consideration when the
requirement is to solve difficult pattern-classification problems.

1.7
Problems

1. You are given a set of supervisory data samples of large enough size. The data
are to be used for training of a learning machine, which is required to solve a
difficult pattern-classification exemplified by that of Figure 1.7(a).

Describe the attributes of a learning machine that is required to tackle such
pattern-classification problem.

2. Discuss the pros and cons of the extended Kalman filtering algorithm used to
train a multilayer perceptron for solving the pattern-classification problem of
Figure 1.7(a) compared to the back-propagation algorithm.

3. Repeat the experiment described in Section V to verify your conclusions in
Problem 2.

4. Discuss the pros and cons of the extended Kalman filtering algorithm used to
train a multilayer perceptron for solving the pattern-classification problem of
Figure 1.7(a) compared to a radial-basis function network trained using the
support vector machine (SVM) learning algorithm.

5. Repeat the experiment described in Section V to verify your conclusions in
Problem 4.

1.7 Problems 17

6. The learning capability of the human brain extends beyond pattern-classification.
To probe further, consider two persons who love listening to music. One is
around 20 to 30 years old, and the other is around 50 to 70 years old. When
a piece of music is played on the radio that goes back to the 20s or 30s, it is
the first person who very much enjoys it. On the other hand, when the piece of
music played on the same radio goes back to the 50s and 70s, it is the second
person who very much enjoys it.

Explain the main reason that is responsible for this difference.

18 1 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) True classification region

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Back-propagation

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) EKF

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) SVM

Fig. 1.7 (a): Original; (b)-(d): Representative test classification results.

19

References

1 S. Haykin, Neural networks and learning
machines, 3rd ed., Prentice Hall, 2008.

2 B. Schölkolf, and A. J. Smola, Learning
with kernels: Support vector machines,

rgularization, optimization, and beyond,
MA: MIT Press, 2003.

3 V. N. Vapnik, Statistical learning theory,
NY: Wiley, 1998.

Please enter \copyrightinfo{Title, Edition}{Author/Editor}{ISBN number}
at the beginning of your document.

