Q2. Discuss notion of statistical independence for pair of events, and corresponding situation for multivariate distribution

Events and Probabilities

- The sample space, Ω of an experiment consists of all possible mutually exclusive outcomes.
- An event is a set of outcomes.
- The probability of an event A :

$$
P(A)=\lim _{N \rightarrow \infty} \frac{\text { No. outcomes of A, } N_{A}}{\text { No. trials, } N}
$$

- Ex. Tossing a fair coin.

$$
\begin{aligned}
\Omega & =\{H, T\} \\
A & =\{H\} \\
\text { Hence, } P(A)=\frac{1}{2} &
\end{aligned}
$$

Independent Events

- Definition: Two events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- Interpretation:
- On the LHS, $A \cap B \Rightarrow$ the event that joint/both events A and B occur.
- On the RHS, we have the product of the probabilities of the individual events/marginals.
- Intuitively it means that the occurrence of one event does not alter the occurrence probability of the other!

More Insight from the Conditional Probability

- Definition: The conditional probability $P(B \mid A)$ is the the probability of event B given that A has occurred:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

provided $P(A) \neq 0$.

- If A and B are independent \Rightarrow

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)
$$

- Interpretation: The event A does not improve our knowledge about the occurrence of B. It makes no difference to B if A has occurred or not.

Toy Example

- Experiment: Toss a coin twice.
- Let A and B be the events of getting head in the first and the second trial, respectively.
- Are the two events independent? Our intuition says Yes !
- Verify from the definition:

$$
\begin{aligned}
P(A) & =P(H H)+P(H T)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
P(B) & =P(H H)+P(T H)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
\text { But, } P(A \cap B) & =P(H H)=\frac{1}{4}=P(A) P(B)
\end{aligned}
$$

- Hence they are independent as expected!

Mutual Exclusiveness and Independence

- Not synonyms!
- If the events A and B are mutually exclusive \Rightarrow
- From the set theory: $A \cap B=\phi$.
- From the probabilistic point of view:

$$
\begin{aligned}
P(A \cap B) & =0 \\
\text { or } P(B \mid A) & =\frac{P(B \cap A)}{P(A)}=0
\end{aligned}
$$

- Occurrence of $\mathrm{A} \Rightarrow \mathrm{B}$ has definitely not occurred $\Rightarrow \mathrm{A}$ nice piece of information!
- Two mutually exclusive events are dependent except they are zero-probabilistic.

Mutual Exclusiveness (Cont'd)

- How we benefit from these two notions?
- Mutually exclusive \Rightarrow add probabilities to get joint probability
- Independent \Rightarrow multiply probabilities to get joint pdf.

Extending the notion to three events

- Conditions for 3 events to be independent:

1. They should be pairwise independent. i.e.,

- A and B are independent
- B and C are independent
- C and A are independent

2. Knowledge of the joint occurrence of any two events is independent of the third event:

$$
\begin{aligned}
& P(A \cap B \mid C)=P(A \cap B) \\
& P(B \cap C \mid A)=P(B \cap C) \\
& P(C \cap A \mid B)=P(C \cap A) .
\end{aligned}
$$

Or equivalently, we write $P(A \cap B \cap C)=P(A) P(B) P(C)$ in this case.

An Example

Figure 1: Simple Events

- Consider 3 events A, B and C in the Venn Diagram (Fig. 1).
- Q: Are these 3 events independent?

Example (Cont'd)

Figure 2: Joint Events

- A: They are pair-wise independent. Since

$$
\begin{aligned}
& P(A \mid B)=P(A)=\frac{1}{2} \\
& P(B \mid C)=P(B)=\frac{1}{2} \\
& P(C \mid A)=P(C)=\frac{1}{2}
\end{aligned}
$$

- However the 2nd condition does not hold:

$$
P(A \cap B \mid C)<P(A \cap B)=\frac{1}{4}
$$

Generalizing the notion to n events

- Multiplication rule. A set of n events $A_{1}, A_{2}, \ldots A_{n}$ are independent, if the probability of any subset of joint events is equal to the product of their marginal probabilities.

$$
P\left(\cap A_{i}\right)=\prod P\left(A_{i}\right)
$$

- Equivalently,

$$
P\left(\cap_{i_{1}}^{i_{m}} A_{i} \mid \cap_{i_{m+1}}^{i_{n}} A_{i}\right)=\prod P\left(\cap_{i_{1}}^{i_{m}} A_{i}\right)=\prod P\left(A_{i}\right)
$$

- At the heart of the independence, everything is independent of everything else.
- In practice, we assume that the outcomes of separate experiments are all independent.

Random Variables

- A real-valued random variable (rv) is function $X: \Omega \rightarrow \mathbb{R}$ that assigns a value to each outcome $\omega \in \Omega$.
- In the coin toss, suppose we receive $\$ 1$ if head appears and pay $\$ 1$ otherwise. In this case, we set the rv X to be the amount after first toss:

$$
X= \begin{cases}1, & \text { if } \mathrm{H} \\ -1, & \text { if } \mathrm{T}\end{cases}
$$

Joint CDFs

Figure 3: Multivariate RVs

- The joint (cumulative) distribution function of two RVs X and Y is the function $F: \mathbb{R} \rightarrow[0,1]$ such that

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =P(\omega \in \Omega \mid\{X(\omega) \leq x\} \cap\{Y(\omega) \leq y\})
\end{aligned}
$$

Independence of Multivariate RVs

- Definition: The two random variables X and Y are independent \Leftrightarrow For any number x and y, the event $A=\{X \leq x\}$ is independent of event $B=\{Y \leq y\}$.
- Recall the joint distribution function of X and Y :

$$
F_{X, Y}(x, y)=P[\underbrace{\{X(\omega) \leq x\}}_{A} \cap \underbrace{\{Y(\omega) \leq y\}}_{B}]
$$

- But events A and B are independent \Rightarrow

$$
\begin{aligned}
P[A \cap B] & =P(A) P(B) \\
\text { hence } F_{X, Y}(x, y) & =F_{X}(x) F_{Y}(y) \forall x, y \in \mathbb{R}
\end{aligned}
$$

- Differentiating the distribution functions, we get the joint pdf

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Toy Example Revisited

Figure 4: Tossing Coin Twice

- Experiment. Toss a coin twice
- let X and Y be the RVs denoting the outcome of first and second trials, respectively.
- Question: Are X and Y independent RVs ?

Toy Example (Cont'd)

- Solution:

$$
\begin{aligned}
P_{X}(x) & =\frac{1}{2} \quad x \in\{-1,1\} \\
P_{Y}(y) & =\frac{1}{2} \quad y \in\{-1,1\} \\
P_{X, Y}(x, y) & =\frac{1}{4} \\
& =P_{X}(x) P_{Y}(y) \quad \forall\{(x, y)\} .
\end{aligned}
$$

Concluding Remarks

- If RVs X and Y are independent, then
$-E(X Y)=E(X) E(Y)$
$-\operatorname{var}(X, Y)=0 \Rightarrow \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$
$-f_{Y \mid X}(y \mid x)=f_{Y}(y)$.
- From the 2 nd statement, independent \Rightarrow uncorrelated, but not always conversely!
- Generalization. A set of n RVs are independent, if for any finite set of numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$, the events $\left\{X_{1} \leq x_{1}, X_{1} \leq x_{1} \ldots X_{1} \leq x_{1}\right\}$ are independent.
- Equivalently, the joint pdf

$$
f_{X_{1}, \ldots X_{n}}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

References

- A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, Hew York, NY, 1991.
- A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison-Wesley, 1989.
- R. Yates and D. Goodman Probability and stochastic processes, Wiley, 2004.

Thank you!

