Q1. Discuss, compare and contrast various curve fitting and interpolation methods

Curve Fitting

- Problem statement: Given a set of $(n+1)$ point-pairs $\left\{x_{i}, y_{i}\right\}, i=0,1, \ldots n$, find an analytic, smooth curve in the interval $\left[x_{0}, x_{n}\right]$.
- Why we perform curve fitting?
- To get estimates at some intermediate points
- To produce a simplified version of a more complicated function
- Methods:
- Interpolation for clean data:
* Lagrange
* Newton's divided-difference
* Splines
- Regression for noisy data:
* Linear, Polynomial ...

Interpolation: Direct Approach

- To fit exactly $(n+1)$ data points, use the polynomial of degree n :

$$
P_{n}=c_{0}+c_{1} x \ldots+c_{n} x^{n}
$$

- Find c_{i} by solving the linear system of equations:

$$
\left(\begin{array}{cccc}
1 & x_{0} & \ldots & x_{0}^{n} \\
1 & x_{1} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- Caution: Not advisable to solve this system owing to the matrix-inversion!
- Do we have any inversion-free methods ?

Lagrange Interpolation

- An n-th degree Lagrange basis polynomial:

$$
\phi_{i}(x)=\frac{\prod_{j=0, j \neq i}^{n}\left(x-x_{j}\right)}{\prod_{j=0, j \neq i}^{n}\left(x_{i}-x_{j}\right)} \quad i=0,1, \ldots n
$$

- Hence the Lagrange's interpolating polynomial is

$$
P_{n}(x)=\sum_{i=0}^{n} c_{i} \phi_{i}(x)
$$

- $\phi_{i}(x)$ has the property:

$$
\phi_{i}\left(x_{k}\right)= \begin{cases}1, & i=k \\ 0, & i \neq k\end{cases}
$$

Lagrange (Cont'd)

- Using the above property, we get the coefficients

$$
c_{i}=y_{i}
$$

hence much simpler to find coefficients!

- Limitations:
- Redo the whole procedure when adding/deleting a point \Rightarrow works bad with unknown order.
- Divisions present in computing the Lagrange polynomial are expensive

Newton's Divided Difference Polynomial

- An i-th order Newton basis polynomial:

$$
\phi_{i}(x)=\prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

- The interpolating polynomial in terms of Newton's basis:

$$
P_{n}(x)=\sum_{i=0}^{n} c_{i} \phi_{i}(x)
$$

- Get the Coefficients:

$$
c_{i}=\left[y_{0}, \ldots y_{i}\right]
$$

where $\left[y_{0}, \ldots y_{i}\right]$ is the notation for an $(i+1)$-th order divided difference.

Newton (Cont'd)

- Virtues:
- For equally spaced data points, replace the divided differences with functional differences.
- Less arithmetic operations in writing the polynomial than that of Lagrangian.
- Easy to add/delete a point \Rightarrow works well for an unknown order
- All the above methods yield the same results for a given set of points. However, for larger n, they all suffer from the Runge's phenomenon.

Runge's Phenomenon

- Is the error is always guaranteed to diminish with increasing polynomial order? No!
- Runge observed an increasing oscillatory behavior when using polynomial interpolation with polynomials of high degree.
- Why?
- The error between the generating function and the interpolating polynomial of order n is bounded by the n-th derivative of the generating function. For Runge-type functions (e.g., $f(x)=\frac{1}{1+25 x^{2}}$), the magnitude of the derivative increases.

Figure 1: Runge Phenomenon in a nutshell (Runge function-red, 5thorder polynomial-blue, 9th-order polynomial-green)

Splines

- Local approach dividing into sub-intervals and fit to a low-order polynomial while preserving the following properties:
- Continuity at the boundary
- Slope continuity at the boundary
- Curvature continuity at the boundary ...
- Spline candidates:
- Linear
- Quadratic
- Cubic
- Useful for functions with local abrupt changes

Linear Splines

Linear Splines

Local Interpolation
Cubic Splines

$$
\begin{gathered}
f(x)=f\left(x_{n-1}\right)+m_{n-1}\left(x-x_{n-1}\right), x_{n-1} \leq x \leq x_{n} \\
m_{i}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\left.x_{i+1}\right)-x_{i}}
\end{gathered}
$$

Quadratic Splines

Quadratic Splines

$$
f_{i}(x)=a_{i} x^{2}+b_{i} x+c_{i}, x_{i-1} \leq x \leq x_{i} \quad \text { 3n coefficients }
$$

Continuity

$$
\begin{aligned}
a_{i-1} x_{i-1}^{2}+b_{i-1} x_{i-1}+c_{i-1} & =f\left(x_{i-1}\right) \\
a_{i} x_{i-1}^{2}+b_{i} x_{i-1}+c_{i} & =f\left(x_{i-1}\right)
\end{aligned} \quad \text { 2(n-1) conditions }
$$

End Conditions

$$
\begin{array}{cc}
a_{1} x_{0}^{2}+b_{1} x_{0}+c_{1}=f\left(x_{0}\right) & 2 \text { conditions }-2 \mathrm{n} \text { total } \\
a_{n} x_{n}^{2}+b_{n} x_{n}+c_{n}=f\left(x_{n}\right) & \\
\text { Derivatives } & \\
f_{i}^{\prime}(x)=2 a_{i} x+b_{i} & \mathrm{n}-1 \text { conditions }-3 \mathrm{n}-1 \text { total } \\
2 a_{i-1} x_{i-1}+b_{i-1}=2 a_{i} x_{i-1}+b_{i} & 1 \text { condition }-3 \mathrm{n} \text { total }
\end{array}
$$

Cubic Splines

- Cubic spline of the form:

$$
f_{i}(x)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i} \quad x_{i-1} \leq x \leq x_{i}
$$

- Find $4 n$ unknowns from the following conditions:

1. Continuity: $2(n-1)$ conditions
2. End: 2 conditions
3. Slope continuity: $(n-1)$ conditions
4. Curvature continuity: $(n-1)$ conditions
5. Curvature at end points: 2 conditions

Linear Regression

- Assumptions:
- We look for a general trend of the data set
- Noisy data are available in large scale
- Fitted model:

$$
f(x)=a_{0}+a_{1} x
$$

- Objective function: Sum of error-squared:

$$
J\left(a_{0}, a_{1}\right)=\sum_{i=0}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Linear Regression (Cont'd)

- To find the unknown coefficients, set the partial derivatives to be zero:

$$
\begin{aligned}
& \frac{\partial J}{\partial a_{0}}=-2 \sum_{i}\left(y_{i}-a_{0}-a_{1} x_{i}\right)=0 \\
& \frac{\partial J}{\partial a_{1}}=-2 \sum_{i}\left[y_{i}-a_{0}-a_{1} x_{i}\right] x_{i}=0
\end{aligned}
$$

- Rearrange the above to get

$$
\left(\begin{array}{cc}
n+1 & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right)\binom{a_{0}}{a_{1}}=\binom{\sum y_{i}}{\sum x_{i} y_{i}}
$$

- For the above case, the coefficient matrix $A=B B^{T} \Rightarrow B B^{T}[a]=B y$. Solve the above system using the SVD or Cholesky.

References

- C. F. Gerald \& P. O. Wheatley, Applied numerical analysis, Pearson, 2004.
- S. Chapra \& R. Cannale, Numerical methods for engineers, 2006.

Thank you!

