
Q1. Discuss, compare and contrast various
curve fitting and interpolation methods
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Curve Fitting

• Problem statement: Given a set of (n + 1) point-pairs

{xi, yi}, i = 0, 1, . . . n, find an analytic, smooth curve in the

interval [x0, xn].

• Why we perform curve fitting?

– To get estimates at some intermediate points

– To produce a simplified version of a more complicated function

• Methods:

– Interpolation for clean data:

∗ Lagrange

∗ Newton’s divided-difference

∗ Splines

– Regression for noisy data:

∗ Linear, Polynomial ...
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Interpolation: Direct Approach

• To fit exactly (n + 1) data points, use the polynomial of degree n:

Pn = c0 + c1x . . . + cnxn

• Find ci by solving the linear system of equations:
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• Caution: Not advisable to solve this system owing to the

matrix-inversion!

• Do we have any inversion-free methods ?
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Lagrange Interpolation

• An n-th degree Lagrange basis polynomial:

φi(x) =

∏n
j=0,j 6=i(x − xj)

∏n
j=0,j 6=i(xi − xj)

i = 0, 1, . . . n.

• Hence the Lagrange’s interpolating polynomial is

Pn(x) =

n
∑

i=0

ciφi(x)

• φi(x) has the property:

φi(xk) =







1, i = k;

0, i 6= k.
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Lagrange (Cont’d)

• Using the above property, we get the coefficients

ci = yi

hence much simpler to find coefficients!

• Limitations:

– Redo the whole procedure when adding/deleting a point ⇒

works bad with unknown order.

– Divisions present in computing the Lagrange polynomial are

expensive
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Newton’s Divided Difference Polynomial

• An i-th order Newton basis polynomial:

φi(x) =

i−1
∏

j=0

(x − xj)

• The interpolating polynomial in terms of Newton’s basis:

Pn(x) =

n
∑

i=0

ciφi(x)

• Get the Coefficients:

ci = [y0, . . . yi]

where [y0, . . . yi] is the notation for an (i + 1)-th order divided

difference.
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Newton (Cont’d)

• Virtues:

– For equally spaced data points, replace the divided differences

with functional differences.

– Less arithmetic operations in writing the polynomial than that

of Lagrangian.

– Easy to add/delete a point ⇒ works well for an unknown order

• All the above methods yield the same results for a given set of

points. However, for larger n,they all suffer from the Runge’s

phenomenon.
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Runge’s Phenomenon

• Is the error is always guaranteed to diminish with increasing

polynomial order? No!

• Runge observed an increasing oscillatory behavior when using

polynomial interpolation with polynomials of high degree.

• Why?

– The error between the generating function and the interpolating

polynomial of order n is bounded by the n-th derivative of the

generating function. For Runge-type functions (e.g.,

f(x) = 1

1+25x2 ), the magnitude of the derivative increases.
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Figure 1: Runge Phenomenon in a nutshell (Runge function-red, 5th-

order polynomial-blue, 9th-order polynomial-green)
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Splines

• Local approach dividing into sub-intervals and fit to a low-order

polynomial while preserving the following properties:

– Continuity at the boundary

– Slope continuity at the boundary

– Curvature continuity at the boundary ...

• Spline candidates:

– Linear

– Quadratic

– Cubic

• Useful for functions with local abrupt changes
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Linear Splines
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Quadratic Splines
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Cubic Splines

• Cubic spline of the form:

fi(x) = aix
3 + bix

2 + cix + di xi−1 ≤ x ≤ xi

• Find 4n unknowns from the following conditions:

1. Continuity: 2(n − 1) conditions

2. End: 2 conditions

3. Slope continuity: (n − 1) conditions

4. Curvature continuity: (n − 1) conditions

5. Curvature at end points: 2 conditions
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Linear Regression

• Assumptions:

– We look for a general trend of the data set

– Noisy data are available in large scale

• Fitted model:

f(x) = a0 + a1x.

• Objective function: Sum of error-squared:

J(a0, a1) =

n
∑

i=0

(yi − a0 − a1xi)
2



McMaster University 14

Linear Regression (Cont’d)

• To find the unknown coefficients, set the partial derivatives to be

zero:

∂J

∂a0

= −2
∑

i

(yi − a0 − a1xi) = 0

∂J

∂a1

= −2
∑

i

[yi − a0 − a1xi]xi = 0

• Rearrange the above to get




n + 1
∑
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∑
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∑
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 =





∑
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∑
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• For the above case, the coefficient matrix

A = BBT ⇒ BBT [a] = By. Solve the above system using the SVD

or Cholesky.
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Thank you!


