

Fig. 1. Two link robot arm illustrating how the Cartesian coordinates  $(y_1, y_2)$  of the end effector is mapped to the given angles  $(\alpha_1, \alpha_2)$ . The solid and dashed lines show the 'elbow up' and 'elbow down' situations, respectively.

## I. TRACKING A ROBOT ARM

This example illustrates the power of the Cubature Kalman Filter/Smoother (CKF/CKS). Fig. 1 shows two typical positions of a two-link robot arm, namely, 'elbow-up' and 'elbow-down'. Given the angles  $(\alpha_1, \alpha_2)$ , the end effector position of the robot arm can be described in the Cartesian coordinate as follows:

$$y_1 = r_1 \cos(\alpha_1) - r_2 \cos(\alpha_1 + \alpha_2) y_2 = r_1 \sin(\alpha_1) - r_2 \sin(\alpha_1 + \alpha_2),$$

where r1 = 0.8 and r2 = 0.2 are the lengths of the two links;  $\alpha_1 \in [0.3, 1.2]$  and  $\alpha_2 \in [\pi/2, 3\pi/2]$  are the joint angles confined to a specific region. The mapping from  $(\alpha_1, \alpha_2)$  to  $(y_1, y_2)$  is called the *forward kinematic*, whereas the *inverse kinematic* refers to the mapping from  $(y_1, y_2)$  to  $(\alpha_1, \alpha_2)$ . The inverse kinematic is not a one-to-one mapping and thus its solution is not unique.

For the inverse kinematic problem, let the state vector  $\mathbf{x}$  be  $\mathbf{x} = [\alpha_1 \ \alpha_2]^T$  and the measurement vector  $\mathbf{y}$  be  $\mathbf{y} = [y_1 \ y_2]^T$ . The state-space model of the problem is written as

State equation: 
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{w}_k$$
  
Measurement equation:  $\mathbf{y}_k = \begin{pmatrix} \cos(\alpha_{1,k}) & -\cos(\alpha_{1,k} + \alpha_{2,k}) \\ \sin(\alpha_{1,k}) & -\sin(\alpha_{1,k} + \alpha_{2,k}) \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} + \mathbf{v}_k$ 

Here, we assume the state equation to follow a random-walk model perturbed by white Gaussian noise



Fig. 2. Tracking results (True trajectory- Solid line, Estimated Trajectory- Dotted line)



Fig. 3. Ensemble averaged (over 50 runs) root mean-squared error (RMSE) results (true rmse- red line, estimated rmse- blue)

 $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \text{diag}[0.01, 0.1])$ . The measurement equation is nonlinear with additive measurement noise  $\mathbf{v} \in \mathcal{N}(0, 0.005\mathbf{I})$ , where  $\mathbf{I}$  is the two-dimensional identity matrix. As can be seen from Fig. 2,  $\alpha_1$  is a slowly increasing process with periodic random walk whereas  $\alpha_2$  is a periodic, fast, and linearly-increasing/decreasing process. As depicted by Figs. 3(a) and 3(b), the root mean squared error of the CKS is less than that of the CKF as expected.

PS: Please find more about Cubature Filtering at http://grads.ece.mcmaster.ca/ aienkaran/.