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6.2 Supervised Training of Recurrent Neural Net-

works

Recurrent neural networks (RNNs) are well known for their use in chaotic dynamic

reconstruction, among other applications. Chaotic dynamics are commonly observed

in a wide variety phenomena from molecular vibrations to satellite motions. In most

cases, the underlying governing equations of chaotic dynamics are difficult to obtain.

In such cases, they may be replaced with RNNs. In this experiment, Bayesian filter-

trained RNNs were considered. The well-known chaotic Mackey-Glass system was

used to generate both the training and test data. The EKF, the CDKF, and the CKF

were employed for the purpose of supervised training of RNNs. Particle filters were

not considered for the following reason: The supervised training of RNNs involves a

large number of weights to be estimated. Hence, an enormous amount of particles is

required to completely capture this huge state-space volume as outlined in Chapter 2.

Simply put, particle filters are computationally quite demanding for this application.

Chaotic Mackey-Glass Attractor. The Mackey-Glass equation is often used to

model the production of white-blood cells in Leukemia patients, and given by the

delay differential equation [75]:

dut

dt
= 0.1ut +

0.2ut−∆

1 + u10
t−∆

, (6.1)

where the delay ∆ = 30. To sample the time-series at discrete time steps, (6.1) was

numerically integrated using the forth-order Runge-Kutta method with a sampling

period of T = 6 s, and initial condition ut = 0.9, for 0 ≤ t ≤ ∆. Given a chaotic
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Figure 6.3: Effect of α on the shape of the activation function ϕ(υ) = 1.71tanh(αυ).

system, it is known that the next data sample uk+τ can be predicted from a prop-

erly chosen time sequence uk = [uk uk−τ . . . uk−[dE−2]τ uk−[dE−1]τ ], where dE and τ

are called the embedding dimension and the embedding delay, respectively. For the

chaotic Mackey-Glass system, dE and τ were chosen to be seven and one, respectively.

RNN Architecture. Bayesian filter-trained RNNs were used to predict the chaotic

Mackey-Glass time-series data. The structure of a RNN was chosen to have seven

inputs representing an embedding of the observed time-series, one output, and one

self-recurrent hidden layer with five neurons. Hence, the RNN has a total of 71

connecting weights (bias included). The linear activation function was used by the

output neuron, whereas all the hidden neurons used a hyperbolic tangent function of

the form

ϕ(υ) = 1.71 tanh(αυ),

where α was assumed to take values ranging from 1/3 to 3. As shown in Figure 6.3,
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the hyperbolic tangent function is ‘mildly’ nonlinear (that is, close to a linear function)

around its origin when α = 1/3. Its nonlinearity increases with α, and behaves closely

similar to a switch when α = 3.

State-Space Model. To estimate the weight parameters using a Bayesian filter,

they are typically assumed to be Gaussian random variables. Specifically, the weight

variables are assumed to follow the first-order noisy autoregressive model, and the

state-space model can therefore be written as

wk = wk−1 + qk−1

dk = Woϕ
(

Wrxk−1 + Wiuk

)

+ rk,

where

• The process noise qk is assumed to be zero-mean Gaussian with covariance Qk−1

• The measurement noise rk is assumed to be zero-mean Gaussian with variance

Rk

• The internal state of the RNN or the output of the hidden layer at time (k− 1)

is denoted by xk−1 (Figure 6.4)

• The desired output dk acts as the measurement

• Wi, Wr and Wo are input, recurrent and output weight matrices of appropriate

dimensions; the weight vector wk is obtained by grouping elements from Wi, Wr

and Wo in ‘some’ orderly fashion

Data. A chaotic time sequence of length 1000 was generated, the first half of

which was used for training and the rest for testing. To train the RNN using the
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(a) (b)

Figure 6.4: Schematic diagrams (a). Original RNN (b). Unfolded RNN of unity
truncation depth.

CKF, 10 epochs/run were made. Each epoch was obtained from a 107 time-step long

subsequence, starting from a randomly selected point. That is, each epoch consisted

of 100 examples, all of which were gleaned by sliding a window of length eight over the

subsequence. The weights were initialized to be zero-mean Gaussian with a diagonal

covariance of 0.5Iw; Qk−1 was made to decay such that Qk−1 = ( 1
λ
−1)Pk−1|k−1, where

λ ∈ (0, 1) is the “forgetting factor” as defined in the recursive least-squares algorithm

[44]; this approximately assigns exponentially decaying weights to past measurements;

λ was fixed at 0.9995, and Rk at 5 × 10−3 across the entire epoch; the state of the

RNN at t = 0, x0, was assumed to be zero.

Unlike the CKF, which relies on integration, the EKF and the CDKF use gradi-

ent information, which in turn necessitate the use of the truncated backpropagation

through time method. To unfold the recurrent loop of the neural network, a trun-

cation depth of unity was found to be sufficient in this experiment (see Figure 6.4).
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Figure 6.5: CKF-based supervised training of RNN.

Figure 6.5 illustrates how the CKF sequentially updates the weights from the input-

output pair during a training phase.

Performance Metric. During the test phase, RNNs were initialized with a 20 time-

step long test sequence and allowed to run autonomously using their own output for

the next 100 steps. To fairly compare the performance of various filter-trained RNNs,

50 independent training runs were made for each value of α. As a performance metric,

the ensemble-averaged cumulative absolute error, which is defined by

ek =
1

50

50
∑

r=1

k
∑

i=1

|d(r)
i − d̂

(r)
i |; k = 1, 2, . . . 100,

was used.

Observations. The long-term accumulative prediction error is expected to increase

exponentially with time for the following two reasons:

• Chaotic systems are highly sensitive even to a slight perturbation in their present

state, popularly referred to as the butterfly effect [90].
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• The prediction error is amplified at each time step due to the closed loop struc-

ture.

From Figures 6.6(a) and 6.6(b), it is observed that the RNNs trained with the EKF

and the CDKF break down at α = 2 and beyond. The CKF-trained RNN per-

forms reasonably well even when α = 3, for which the hyperbolic tangent function

is ‘severely’ nonlinear (Figure 6.6(c)). The reason is that the CKF tends to find a

better local minimum of the cost function in the weight space than the EKF or the

CDKF.

To visualize whether the CKF-trained RNN has captured the true dynamics of

the chaotic time series, the phase plot– a three-dimensional diagram with its axes

denoting the RNN outputs d̂k+2, d̂k+1, and d̂k– was constructed. The desired result

is that the RNN closely approximate the true dynamics of the Mackey-Glass system.

Figures 6.7(a), 6.7(b) and 6.7(c) show the phase plots of the true dynamics, and the

reconstructed dynamics when α = 1/3 and α = 3, respectively. When α = 1/3 the

reconstructed phase plot closely resembles the true phase plot as desired; whereas it

is not exactly the case when α = 3.
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(a) EKF-trained RNN.
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(b) CDKF-trained RNN.
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(c) CKF-trained RNN.

Figure 6.6: Effect of nonlinearity on the autonomous-prediction performance. Nonlin-
earity is controlled by the parameter α, and the prediction performance is measured
by the ensemble-averaged cumulative absolute error criterion (α = 1/3 (solid-thin),
2/3 (dashed), 1 (dotted), 2 (dash-dot), and 3 (solid-thick))
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(a) True Mackey-Glass phase plot
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(b) Reconstructed plot when α = 1
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(c) Reconstructed plot when α = 3

Figure 6.7: Comparison of two different reconstructed phase plots with the true plot
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6.3 Model-Based Signal Processing

In the second experiment, the empirical model of the chaotic Mackey-Glass system was

built from the clean input-output data. In contrast, provided the noisy measurements

of a dynamic system, the objective of this third experiment was to build a nonlinear

empirical model of the dynamic system from noisy measurements for the following

purposes:

• To denoise a given test signal (signal enhancement)

• To statistically decide whether the denoised test signal belongs to the empirical

model (signal detection)

In this experiment, the idea of directly training RNNs in the supervised mode must

be abandoned because the desired (teacher) output is noisy. A similar situation

arises in many important real-life applications such as speech signal enhancement,

image processing, decoding of symbols transmitted through a noisy wireless channel,

and fault diagnosis. To achieve the above objectives, a systematic filtering setup is

important.

Cooperative Filtering for Signal Enhancement

The objective of cooperative filtering is to construct an empirical model using

(pseudo-) clean data extracted from the noisy data. To accomplish this objective,

two distinct estimators, namely, the signal estimator and the weight (parameter)

estimator, are coupled to operate in a cooperative manner (see Figure 6.8). At

each time instant, the weight parameters of the RNN are estimated from the latest
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MU/SE MU/SE

MU/WETU/WE

Figure 6.8: Cooperative filtering illustrating interactions between the signal estimator
(SE) and the weight estimator (WE); the labels TU and MU denote ‘Time Update’
and ‘Measurement Update’, respectively)

signal estimate, and the signal itself is estimated from the latest weight estimate,

appropriately.

Data. To generate a noisy time series, the chaotic Mackey-Glass time series was

considered again, but it was corrupted by additive white Gaussian noise this time.

The signal-to-noise ratio was fixed at 10 dB. As in the second experiment, the

architecture of a RNN was chosen to be 7-5R-1, and a hyperbolic tangent function of

the form ϕ(υ) = tanh(υ) was used.

State-Space Models. The dynamic state-space model for the signal estimator can

be written as

uk = f(uk−1, ŵk−1|k−1,xk−2) + [1 0 . . . 0]vk−1 (6.2)

zk = [1 0 . . . 0]uk + ek, (6.3)
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where

• uk = [uk uk−1 . . . uk−6] denotes the data window to be estimated

• The state transition function

f(., ., .) =



















Ŵo,k−1|k−1ϕ
(

Ŵr,k−1|k−1xk−2 + Ŵi,k−1|k−1uk−1

)
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• The measurement noise ek was assumed to be ek ∼ N (0, σ2
e), where the variance

σ2
e was computed from the prescribed value of the signal-to-noise ratio

• The process noise vk−1 was assumed to be vk−1 ∼ N (0, σ2
v), where the variance

σ2
v was fixed to be 10% of σ2

e ; the final result was not sensitive to this choice of

percentage as long as it was below 100%

• The initial signal estimate was assumed to be zero with unity covariance.

To set the stage for the state-space model of the weight estimator, (6.3) is rewritten

in terms of w as follows:

zk = uk[1] + ek = Woϕ
(

Wrxk−2 + Wiuk−1

)

+ vk−1 + ek

≈ Woϕ
(

Wrxk−2 + Wiûk−1|k−1

)

+ rk,

where the measurement noise rk ∼ N (0, σ2
e +σ2

v). The state-space model of the weight
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Figure 6.9: Ensemble-averaged (over 50 runs) Mean-Squared Error (MSE) Vs. num-
ber of epochs (x- EKF, filled circle- CKF).

estimator is therefore given by

wk = wk−1 + qk−1

zk = Woϕ
(

Wrxk−2 + Wiûk−1|k−1

)

+ rk.

As shown in Figure 6.8, the cooperative filtering system functions only with inputs

in a manner similar to unsupervised training.

To fairly compare the performance of the CKF-trained RNN against the EKF

and the CDKF-trained RNNs, 50 independent training and test runs were made,

each of which consisted of 10 epochs. Each training epoch consisted of a subsequence

of 100 examples. During the test phase (that is, at the end of each training epoch

here), the trained RNN was presented with a test sequence of length 100. Thus,

the ensemble-averaged (over 50 runs) MSE was computed in the course of training

and test phases (see Figures 6.9(a) and 6.9(b)). In the course of the test phase, the
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Figure 6.10: Representative test signal before and after cleaning (x- noisy signal (or
measurements), dotted thin- signal after cleaning, thick- original clean signal)

weight estimator remained turned off. As shown in Figures 6.9(a) and 6.9(b), the

CKF improves performance by a discernable margin in both the training and test

phases.

Figures 6.10(a) and 6.10(b) show the representative cleaned test signals obtained

from the EKF and the CKF, respectively, at the end of the tenth epoch. The CKF

significantly improves the quality of the signal as compared to the EKF.

Signal Detection

Motivated by the problem of detecting targets buried in sea clutter [122, 43], the

third experiment was further augmented to deal with a signal detection scenario. To

systematically perform signal detection, the consistency check– making a statistical

decision whether the test signal is consistent with the trained model– based on the

normalized innovations squared (NIS) statistic of signal estimators was introduced.
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Figure 6.11: Normalized innovations squared (NIS) statistic Vs. test window index
(x- EKF, filled circle- CKF, dotted thick- 95% confidence intervals).

Under the hypothesis that the test signal is consistent, the NIS statistic, defined by

ǫk = [zk − ẑk|k−1]
T P−1

zz,k|k−1[zk − ẑk|k−1],

is a realization of the chi-squared distribution with nz degrees of freedom, where nz

is the dimension of the measurement vector [9].

In this experiment, the NIS statistic of the test data was computed as follows:

The test data of length 100 was divided into a number of overlapping data windows

of length K = 10. Two adjacent windows were separated by one time step. Thus, we

were able to obtain 71 data windows. The ensemble-averaged (over N = 50 runs) NIS

statistic for all these windows were then computed. For example, the NIS statistic of

the first window was computed as

ǭ(1) =
1

NK

N=50
∑

n=1

K=10
∑

k=1

ǫk(n).
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To accept the hypothesis for the consistency at 95% confidence level, the confidence

interval was computed from [72]:

I ≈ [
1

2NK
(
√

(2NK − 1) − 1.96)2,
1

2NK
(
√

(2NK − 1) + 1.96)2].

In this experiment, the confidence interval is shown by the dotted lines in Figure 6.11.

The desired result is that the NIS statistic lie inside those confidence intervals more

than 95% of the time. As can be seen from Figure 6.11, the CKF provides a reliable

detection result. The CKF result indicates that the test signal belongs to the trained

model with 95% confidence approximately.

Summary

In this chapter, the formulation of the square-root cubature Kalman filter (SCKF) is

successfully validated through three different filtering problems. In all these problems,

the SCKF significantly outperforms other presently known nonlinear filters.
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