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In Haykin (2006) [8], the idea of Cognitive Radar was described for the first time. Four essential
points were emphasized in that seminal paper: Bayesian filtering in the receiver, dynamic programming
in the transmitter, memory, and global feedback to facilitate computational intelligence. This paper
provides a first step towards designing a cognitive radar for tracking applications by presenting a
fore-active tracking radar; a radar that utilizes its previous measurements and actions to optimize its
transmitted waveform (Haykin, 2011 [11]). In our design, the emphasis is being placed on the cubature
Kalman filter to approximate the Bayesian filter in the receiver, approximate dynamic programming for
transmit-waveform selection in the transmitter, and global feedback embodying the transmitter, the radar
environment, and the receiver all under one overall feedback loop. Simulation results, based on the
tracking of an object falling in space, are presented, which substantiate practical validity of the superior
performance of a fore-active tracking radar over a traditional active radar with fixed waveform.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

In Haykin [8], the idea of Cognitive Radar was described for the
first time in a seminal paper. Motivation for this new idea was the
echo-location system of a bat. Another equally compelling moti-
vation for cognition is the visual brain. In most basic terms, the
visual brain is characterized by two important features, perception
of the environment (the world) in one part of the brain and ac-
tion to control the environment in a separate part of the brain [6].
The net result of these two functions, working together in a coor-
dinated fashion, is the perception-action cycle; this basic cycle is
indeed the brain’s counterpart to the information-processing cycle
in a cognitive radar that was described in Haykin [8]. Another com-
pelling way to see the close relationship between cognitive radar
and the visual brain is to examine the coding–decoding function.
Here again, it is rather striking to find that this basic property of
cognition in the brain and its counterpart in cognitive radar are
ever so closely analogous [9]. The point that we are trying to em-
phasize here is that if we are to build up our knowledge about the
fundamentals of cognitive radar, there is much that we can learn
from the mammalian brain.

With optimal performance as the goal, the ideal way to build
a cognitive radar is to look to the optimal Bayesian filter [12] as
the central functional block in the receiver for perception of the
environment, and Bellman’s dynamic programming [3] as the cen-
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tral functional block in the transmitter for action to control the
environment. Naturally, there has to be feedback from the receiver
to the transmitter to make it possible for the receiver to send in-
formation about the environment to the transmitter. In so doing,
global feedback, embodying the two parts of the radar system and
the environment under a single overall loop operating in an on-line
manner, and with it the radar becomes computationally intelligent
to some extent. Here again, if we are to examine the visual brain,
we will find that, unlike perception and action, there is no single
functional block that takes care of intelligence; rather, this impor-
tant function is distributed through feedback across many parts of
the brain.

In the light of cognition as an influential factor in the design of
next generation of radar, we now have three classes of radars [11]:

• Traditional active radar that has no feedback from the receiver
to the receiver and therefore the transmit-waveform is fixed.

• Fore-active radar that utilizes the information fed back from
the transmitter to choose its transmit waveform.

• The cognitive radar that expands on fore-active radar by having
memory, attention and enhanced intelligence.

The radar system presented in this manuscript is an example of
a fore-active radar that paves the way towards achieving the first
step towards cognition.

With this introduction on the analogy between the visual brain
and cognitive radar, we may now briefly describe how the rest of
the paper is organized: Section 2 of the paper describes a base-
band model of the signal transmission link that extends from the
continuous-time transmitter output to the discrete-time input of
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the cubature Kalman filter (CKF) in the receiver; we refer to this
extension as the forward transmission path. Brief description of
the CKF approximation to the optimal Bayesian filter is presented
in Section 3; it is the CKF that perceives the environment, thereby
extracting the information about state of the radar target to send
feedback information about it to the transmitter. Section 4 out-
lines the basic fore-active tracking radar (FATR) problem with finite
depth of horizon, thereby setting the stage for the formulation of a
dynamic-programming (DP) algorithm for action to control the re-
ceiver via the environment through a waveform-selection process.
This linkage from the receiver output to the transmitter output
is referred as the feedback transmission path. Section 4 also dis-
cusses two other issues: cubature rule based approximation for the
cost-to-go function needed for the DP algorithm, followed by com-
putational issues involved in implementing it. Section 5 describes
a computer experiment to evaluate the FATR performance under a
classic tracking scenario that focuses on a target falling in space;
the root mean-square error (RMSE) for the state is displayed in the
simulation results for different state parameters. The concluding
section summarizes the important findings in the paper. Notations
used in the paper are summarized in Appendix A at the end of
this paper; and Appendix B addresses an important approximation
in evaluating the cost function.

2. Analog-to-digital baseband model of radar signal transmission

A commonly used method to control selection of the transmit-
waveform is to equip the transmitter with a digitally imple-
mentable waveform generator that embodies a prescribed library
of waveforms. To elaborate, when we speak of a baseband model,
we mean a band of frequencies determined by the waveform-
generator’s spectral content. For designing the waveform generator,
we have opted for linear frequency modulation (LFM) combined
with Gaussian pulse for amplitude modulation. With fc denoting
the carrier frequency of the transmitted radar signal, sT (t), we may
now use complex baseband theory to express it as follows:

sT (t) = √
2 Re

{√
ET s̃(t)exp( j2π fct)

}
, (1)

where ET is the transmitted signal energy, and s̃(t) is the complex
envelope of sT (t) [7]:

s̃(t) = (πλ2)− 1
4 exp

(
−
(

1

2λ2
− jb

)
t2
)

(2)

with |t| � T /2 + t f where t f � T /2 is the rise and fall time, λ is
the duration of the Gaussian envelope, and b is a scalar denot-
ing the chirp rate. We use the vector θ = [λ,b] to denote the
two transmit waveform parameters that will be optimized by the
waveform-selection algorithm. We discretize the possible range of
transmit waveform parameters into a two-dimensional grid. Each
point in this grid corresponds to a transmit waveform. All wave-
forms correspond to all the grid points from our transmit wave-
form library.

The radar echo reflected from the target received at the receiver
input is correspondingly defined by

r(t) = sR(t) + n(t), (3)

where sR(t) is the signal component of r(t) and n(t) is the additive
white Gaussian noise, both of which are centered on the carrier
frequency fc . Invoking complex baseband theory, we may define
sR(t) as follows:

sR(t) = √
2 Re

[√
E R s̃(t − τ )exp

(
j2π( fct + νt)

)]
, (4)

where E R is the received signal energy; τ = 2ρ/c is the delay
of the received signal where ρ is the range of the target, and c
denotes the speed of electromagnetic wave propagation (i.e. the
speed of light); ν is the Doppler shift defined by −2 fcρ̇/c with
ρ̇ denoting the range rate of the target, assuming that the tar-
get is moving toward the radar. Finally, ñ(t) denotes the complex
envelope of the noise n(t) at the receiver input. Throughout the pa-
per, it is assumed that the transmitted radar signal is narrowband,
which means the complex envelopes s̃(t) and ñ(t) in the baseband
model occupy a frequency band small in comparison to the carrier
frequency fc .

The idea behind baseband modeling, exemplified by the com-
plex envelopes s̃(t) and ñ(t), is that both of these components are
low-pass in their spectral characteristics, whereas the band-pass
transmitted signal sT (t) and received signal r(t) are more difficult
to handle. Most importantly, baseband modeling dispenses with
the carrier frequency fc and there is no loss of information in bas-
ing the radar signal analysis on complex envelopes.

2.1. Bank of matched filters and envelope detectors

At the front end of the receiver, typically, we have a bank of
matched filters. The impulse response of a matched filter is defined
by the conjugate of the complex transmitted signal envelope s̃(t),
shifted in time as well as frequency by scaled versions of desired
time- and frequency-resolutions, respectively. Recognizing that a
matched filter is basically equivalent to a correlator, it follows that
the bank of matched filters acts as a time-frequency correlator of
the complex transmitted signal envelope with itself. In the absence
of receiver noise, the squared magnitude of this correlation con-
stitutes the ambiguity function [16]. Every matched filter in the
filter bank is therefore followed by a square-law envelope detector.
The resulting real-valued two-dimensional output of each envelope
detector, involving time delay and Doppler shift, defines an inter-
pulse vector denoted by zk , where the subscript k denotes discrete
time. This vector performs the role of measurement vector in the
state-space model of the radar target, discussed next.

2.2. State-space model of the target

There are two equations in the state-space model of a radar
target:

• System equation, which describes evolution of the target’s
state across time in accordance with the nonlinear equation:

xk = f(xk−1) + vk, (5)

where xk denotes the state of the radar target at discrete
time k, and vk denotes the additive system noise accounting
for environmental uncertainty about the target. The state of
the target can be chosen in a manner depending on the prob-
lem. For instance it can include the position, the velocity and
the acceleration of the target. The state space for our case
study problem, i.e. tracking of a falling object, is the object
altitude, velocity and the ballistic coefficient.

• Measurement equation, which describes dependence of the
measurement vector zk on the state xk as shown by

zk = h(xk) + wk(θk−1), (6)

where the vector wk(θk−1) denotes the measurement noise
that acts as the driving force. It is in the dependence of this
noise on the waveform-parameter vector θk−1 that the trans-
mitter influences accuracy of the state estimation in the re-
ceiver. The transmit waveform parameters at time k.

Application of the state-space model described in (5) and (6)
hinges on the following four basic assumptions:
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• First, the nonlinear vectorial functions f(·) and h(·) in (5) and
(6) are both smooth and otherwise arbitrary.

• Second, the system noise vk and measurement noise wk are
zero-mean Gaussian distributed and statistically independent
of each other. The Gaussian assumption is valid for cases
where the thermal noise is the only source of measurement
noise. Otherwise, it is a convenient assumption for mathemat-
ical tractability in derivation of state-space estimation equa-
tions.

• Third, the covariance matrix of system noise is known.
• Fourth, the state is independent from both the system noise

and measurement noise.

Examining (5) and (6), we immediately see that the state xk
is hidden from the observer, and the challenge for the receiver is
to exploit dependence of the measurement vector on the state to
compute an estimate of the state and do so in a sequential on-line
manner.

With this objective in mind, we need to determine statistical
characteristics of the measurement noise wk . To this end, we first
recognize that the measurement noise covariance is dependent on
the parameter θk−1 of the waveform generator in the transmit-
ter [13], hence the notation R(θk−1) for this covariance. Moreover,
the inverse of the Fisher information matrix is the Cramér–Rao lower
bound on the state estimation error covariance matrix for unbiased
estimator [15]. Denoting the Fisher information matrix by J, we
may consider the inverse matrix J−1 as a suitable characterization
for optimal waveform selection, and thus write

R(θk−1) = Γ J−1(θk−1)Γ , (7)

where Γ is a symmetric matrix defined by

Γ � diag

[
c

2
,

c

2 fc

]
. (8)

For convenience of presentation, it is desirable to separate the
contribution of the waveform parameter vector in the Fisher in-
formation matrix from the received signal energy-to-noise spectral
density ratio (i.e. the SNR) defined by

η = 2E R

N0
, (9)

where N0 is the spectral density of the complex noise envelope
ñ(t). To this end, we write

J(θk−1) = ηU(θk−1). (10)

Accordingly, we may rewrite (7) in the desired form [14]

R(θk−1) = 1

η
Γ U−1(θk−1)Γ , (11)

with the matrix U(θ) being merely a scaled version of the Fisher
information matrix J(θ), this new matrix is a symmetric matrix
whose three elements are described as mean-square values of the
following errors:

• the Doppler estimation error,
• the cross Doppler-delay estimation error, and
• the delay estimation error.

In Kershaw and Evans [13], it is shown that for the transmit
waveform, combining linear frequency modulation with Gaussian
amplitude modulation, the measurement noise covariance matrix
is defined by

R(θk−1) =
⎡
⎣ c2λ2

2η − c2bλ2

2π fcη

− c2bλ2 c2

2

( 1
2 + 2b2λ2

)
⎤
⎦ . (12)
2π fcη (2π fc) η 2λ
It is important to note however that this formula for R(θk−1)

is valid so long as the assumption that the energy per transmitted
waveform remains constant from one cycle to the next. Otherwise,
we would have to expand the waveform parameter vector θk−1 by
adding a new variable ηk−1.

3. Cubature Kalman filter for target state estimation

As stated previously in Section 1, the optimal Bayesian filter is
the ideal tool for tracking the target’s state in the radar receiver.
Unfortunately, when the state-space model is nonlinear as it is in
(5) and (6), the Bayesian filter is no longer computationally feasi-
ble, hence the practical need for its approximation. To this end,
the cubature Kalman filter is the closest known approximation
to the Bayesian filter that could be designed in a nonlinear set-
ting under the key assumption: The predictive density of the joint
state-measurement random variable is Gaussian [1]. Under this as-
sumption, the Bayesian filter reduces to the problem of how to
compute moment integrals whose integrands are of the following
form:

nonlinear function × Gaussian. (13)

To numerically compute integrals whose integrands are of this
form, we use a rule described next.

3.1. The cubature rule of third degree

Consider an example of the integrand described in (13), which
consists of the nonlinear function f(x) multiplied by a multivariate
Gaussian density denoted by N (x;μ,Σ), where μ is the mean
and Σ is the covariance. According to the third-degree cubature
rule [5], the resulting integral may be approximated as follows:∫
Rn

f(x)N (x;μ,Σ)dx ≈ 1

2n

2n∑
i=1

f(μ + √
Σαi), (14)

where a square-root factor of the state-estimation error covariance

Σ satisfies the factorization Σ = √
Σ

√
Σ

T
; the set of 2n cubature

points is given by

αi =
{√

n ei, i = 1,2, . . . ,n,

−√
nei−n, i = n + 1,n + 2, . . . ,2n,

(15)

with ei ∈ R
n denoting the i-th elementary column vector. The

CKF specifically uses the third-degree cubature rule to numerically
compute Gaussian weighted integrals. This rule is exact for inte-
grands being polynomials of degree up to three or any odd integer.

Here we present the CKF’s two-step update cycle, namely, the
time update and the measurement update as described next.

3.2. Time update

In the time-update step, the CKF [1] computes the mean x̂k|k−1
and the associated covariance Pk|k−1 of the Gaussian predictive
density numerically using cubature rules. We write the predicted
mean

x̂k|k−1 = E[xk|Dk−1], (16)

where E[·] is the statistical expectation operator and Dk is the
history of input-measurement pairs available up to time k. Sub-
stituting the system equation (5) into (16) yields

x̂k|k−1 = E
[
f(xk−1) + vk|Dk−1

]
. (17)

Because vk is assumed to be zero-mean and uncorrelated with
the measurement sequence, we get
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x̂k|k−1 = E
[
f(xk−1)|Dk−1

]
=
∫

RNx

f(xk−1)p(xk−1|Dk−1)dxk−1

=
∫

RNx

f(xk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1, (18)

where, as before, N (.; ., .) is the conventional symbol for a Gaus-
sian density. Similarly, we obtain the associated error covariance

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T |Dk−1
]

=
∫

RNx

f(xk−1)fT (xk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

− x̂k|k−1x̂T
k|k−1 + Qk−1, (19)

where Qk is the covariance of system noise vk .

3.3. Measurement update

Recognizing that the so-called innovation process is not only
white but also zero-mean Gaussian when the additive measure-
ment noise is Gaussian, the predicted measurement may be es-
timated in the least-squares error sense. In this case, we write
the predicted measurement density also called the filter likelihood
density, as follows

p(zk|Dk−1) = N (zk; ẑk|k−1,Pzz,k|k−1), (20)

where the predicted measurement itself and the associated covari-
ance are respectively given by

ẑk|k−1 =
∫

RNx

h(xk)N (xk; x̂k|k−1,Pk|k−1)dxk, (21)

Pzz,k|k−1 =
∫

RNx

h(xk)hT (xk)N (xk; x̂k|k−1,Pk|k−1)dxk

− ẑk|k−1ẑT
k|k−1 + R(θk−1). (22)

Accordingly, we may write the Gaussian conditional density of
the joint state and the measurement:

p
([

xT
k zT

k

]T |Dk−1
)

= N
((

x̂k|k−1
ẑk|k−1

)
,

(
Pk|k−1 Pxz,k|k−1

PT
xz,k|k−1 Pzz,k|k−1

))
, (23)

where the cross-covariance

Pxz,k|k−1

=
∫

RNx

xkhT (xk)N (xk; x̂k|k−1,Pk|k−1)dxk − x̂k|k−1ẑT
k|k−1. (24)

On the receipt of a new measurement zk , the CKF computes the
posterior density p(xk|Dk) from (23) yielding

p(xk|Dk) = p(xk, zk|Dk−1)

p(zk|Dk−1)
= N (xk; x̂k|k,Pk|k), (25)

where

x̂k|k = x̂k|k−1 + Gk(zk − ẑk|k−1), (26)

Pk|k = Pk|k−1 − GkPzz,k|k−1GT
k , (27)

with the Kalman gain being defined by
Gk = Pxz,k|k−1P−1
zz,k|k−1. (28)

In sum, the CKF numerically computes Gaussian weighted integrals
that are present in (18)–(19), (21)–(22) and (24) using cubature
rules.

4. Dynamic programming for waveform selection

Previously we remarked that the measurement covariance in
state equation (6) depends on the transmitted waveform parameter
vector θ = [λ,b], which applies to LFM with Gaussian amplitude
modulation. Hence, if the waveform parameters are selected op-
timally, any action taken by the transmitter will be regarded as
an optimal reaction to the environment perceived by the receiver.
With this point in mind, we may now address the algorithmic for-
mulation for waveform selection in the transmitter. In effect, the
new algorithm assumes the role of a controller in a nonlinear feed-
back system that tunes the transmit-waveform parameters so as
to tame the behavior of the receiver in an effort to minimize the
tracking errors in some statistical sense.

The perception-action cycle. This cycle, representing the first step
towards cognition, operates as follows:

• The transmitter illuminates the environment at time k by gen-
erating a waveform whose parameters are defined by θk .

• Assuming a unit-time delay to account for propagation from
the transmitter to the receiver, the measurement at the re-
ceiver front is denoted by zk+1.

• The CKF in the receiver operates on zk+1 to produce a one-
step predicted estimate of the true state, denoted by x̂k+1|k .
The feedback sent to the transmitter is correspondingly based
on the predicted state estimate error vector, denoted by the
covariance matrix Pk+1|k which is computable given the mea-
surement zk .

• With this covariance matrix at hand, the transmitter receives
the covariance matrix by one time step to compute the filtered
state-error covariance matrix Pk+1|k+1. As noted previously by
Kershaw and Evans [13], there is only one unknown in the
computation of Pk+1|k+1 and that is the update waveform-
parameter vector θk+1 which, of course, is not available at
time k.

• To solve for θk we look to dynamic programming to find the
particular set of parameters for which the mean squared state
estimate error vector, that is the trace of Pk+1|k+1, is mini-
mized.

• Now, with θk at hand, the stage is set for the next perception-
action cycle to be performed at time k + 1 and so in goes on.

Before proceeding further, two important remarks deserve par-
ticular attention:

• First, when a cognitive tracking radar is viewed as a feedback
control system, the basic perception-action cycle is replaced
by a measurement-waveform selection cycle, that is (zk, θk),
where k denotes the current cycle. In other words, the mea-
surement zk made by the receiver at cycle k leads to waveform
selection θk in the transmitter at the next cycle k + 1.

• Second, the state of the target is hidden from the receiver,
which, in turn, poses a practical problem in the following
sense: The formulation of Bellman’s dynamic programming not
only demands that the environment be Markovian but also
the controller has perfect knowledge of the state. In reality,
however, the transmitter of a radar tracker has an imperfect
estimate of the state reported to it by the receiver. Accord-
ingly, we are faced with an imperfect state-information problem.
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To resolve this problem, we follow [4] by introducing a new
information state vector defined by

Ik � (Zk,Θk−1), with I0 = z0, (29)

where

Zk = [z1, z2, . . . , zk], (30)

Θk−1 = [θ0, θ1, . . . , θk−1]. (31)

From these three equations, we readily obtain the recursion

Ik+1 = (Ik, zk+1, θk), (32)

which may be viewed as the state evolution of a new dynamic
system with perfect-state information, and therefore applica-
ble to dynamic programming. According to (32), we may say:
◦ Ik is the current value of the state;
◦ θk is the next waveform parameter vector computed at time

k and to be chosen for transmission at time k which will be
received by the transmitter at time k + 1;

◦ the measurement zk+1 is viewed as a random disturbance
resulting from the control decision θk; and

◦ note that the terminology adopted in (32) is consistent with
the system equation (5).

The information-processing cycle. At any cycle time k, the wave-
form-selection algorithm seeks to find the set of best waveform
parameters by minimizing a cost-to-go function for a rolling hori-
zon of L steps, that is, to minimize the cost incurring in steps k:
k + L − 1. Denoting the control policy for the next L steps by
πk = {μk, . . . ,μk+L−1} with the policy function μ(Ik) = θk ∈ Pk
mapping the information vector into an action in the waveform
library Pk , we wish to find a policy πk at time k corresponding to
the solution of the following minimization:

min
πk

E

[
k+L−1∑

i=k

g
(
Ii,μi(Ik)

)]
, (33)

where the cost function g(·) inside the summation is defined as
the tracking expected mean-square error (MSE):

g(Ik,μk)

= Exk+1,zk+1|Ik,θk

[
(xk+1 − x̂k+1|k+1)

T (xk+1 − x̂k+1|k+1)
]
, (34)

where x̂k+1|k+1(Ik,xk+1, zk, θk) is the posterior expected state es-
timation given the selected parameter vector θk . Obviously, for
an L-step dynamic-programming algorithm, we need to predict L-
steps ahead, which also means that accurate performance of the
predictor in the receiver is of crucial to performance of the cogni-
tive tracking radar.

To elaborate more about the behavior of the cognitive tracking
radar system, we may refer to Fig. 1, where the information flow
is classified into two paths:

(1) Feedforward transmission path for optimal estimation of the
estimated state in the receiver. In this path, the transmitter
has already selected the waveform parameter vector θk . The
receiver then builds on previous knowledge of θk and current
observable zk available at time k to locally optimize the state
estimation.

(2) Feedback transmission path for updating the waveform se-
lection in the transmitter. Given the mean-square error com-
puted at the receiver (CKF) output at time k, the requirement
is to find the policy μk that selects θk for the next signal
transmission at time k + 1.
Fig. 1. Information flow in fore-active tracking radar.

Note that in Fig. 1 we plot the signal flow by looking one-step
into the future. The computation starts with the initial condition
(z0, θ0) and proceeds by computing θ1, and so on. When there is
provision of a horizon looking more steps into the future, we will
have a general optimization problem. This optimization is solved
by a recursive dynamic-programming (DP) algorithm at time k,
which is made up two parts (see [4] for details):

Terminal point:

J (IL−1,μL−1) = inf
θ L−1∈PL−1

g(IL−1,μL−1). (35)

Intermediate points:

J (Ik,μk) = inf
θk∈Pk

(
g(Ik,μk) + Ezk+1|Ik,θk [Jk+1]

)
(36)

for p = k, . . . ,k + L − 1, where J p = J (Ip,μp). With (35) pertain-
ing to the terminal point, (36) pertains to the intermediate points
that go backward from the terminal point in (L − 1) steps. The
optimal policy {μ∗

k , . . . ,μ∗
k+L−1} is obtained in the following two-

step manner:

• We first minimize the terminal point (35) for every possi-
ble value of the information vector Ik+L−1 to obtain μ∗

k+L−1.
Meanwhile, Jk+L−1 is also computed;

• Then, Jk+L−1 is substituted into the calculation of the in-
termediate points (36) to obtain μ∗

k+L−1 over every possible
value of Jk+L−2. This step is repeated until we reach to the
initial point with μk .

In what follows, we apply two approximations to simplify the
DP algorithm.

4.1. Approximation of the cost function g(·)

Inclusion of the state xk+1 under the expectation defined in
(34) speaks for itself. As for the observable zk+1, its inclusion un-
der the expectation is justified on the following ground: As shown
in the second line of (34), the estimate x̂k+1|k+1 depends on zk+1,
which itself depends nonlinearly on xk+1. Consequently, it is diffi-
cult to evaluate this expectation. The best we may therefore do is
to approximate the cost g(Ik, zk) as shown by

g(Ik,μk) ≈ Tr(Pk+1|k+1), (37)

where Tr(·) is an operator that extracts the trace of the enclosed
covariance Pk+1|k+1; see Appendix B for detailed derivation of this
approximate formula.

4.2. Measurement-space approximation

The measurement space (i.e., the control space for the wave-
form selection algorithm) is an infinite-dimensional continuous-
valued space. Moreover, the dimension of this space grows expo-
nentially with depth of the optimization horizon L. In fact, at each
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step of the optimization, we need to examine an infinite num-
ber of possibilities that the perfect state information vector Ik+1
can evolve to the next step in time. To simplify this computation,
we use the same approximation technique used in development
of the CKF in Section 3 by approximating the expectation oper-
ation in (34) using the third-degree cubature rule. According to
the CKF formulation, the predicted measurement zk+1 is Gaussian-
distributed with mean ẑk+1|k as in (21) and covariance Pzz,k+1|k in
(22). Therefore the expectation term in (34) may now be written
as

Ezk+1|Ik,θk

[
Tr(Pk+1|k+1)

]
=
∫

zk+1

p(zk+1|Ik, θk)Tr(Pk+1|k+1)dzk+1

=
∫

zk+1

N (ẑk+1|k,Pzz,k+1|k)Tr(Pk+1|k+1)dzk+1. (38)

Approximating the integral in (38) using the cubature rule of (14),
we obtain

Ezk+1|Ik,θk

[
Tr(Pk+1|k+1)

]
≈ Tr

(
1

2Nz

2Nz∑
i=1

Pk+1|k+1
(
ẑk+1|k + P1/2

zz,k+1|kαi
))

, (39)

where Pk+1|k+1 is expressed as a function of (ẑk+1|k + P1/2
zz,k+1|kαi)

and P1/2
zz,k+1|k is the square root of the covariance matrix Pzz,k+1|k

and the cubature points αi are defined in accordance with (15).
Thus, using the approximation of (39), the DP algorithm is sim-

plified into the following pair of equations:
Terminal point:

J (Ik+L−1,μk+L−1) = inf
θk+L−1∈Pk+L−1

Tr(Pk+L−1|k+L−1). (40)

Intermediate points:

J (Ik,μk)

= inf
θk∈Pk

Tr

(
Pk|k + 1

2Nz

2Nz∑
i=1

Pk+1|k+1
(
ẑk+1|k + P1/2

zz,k+1|kαi
))

(41)

for k = 1, . . . , L −1, where (40) denotes the terminal point and (41)
denotes the intermediate points going backward. The intermediate
points (41) collapse to the terminal point (40) if and only if L = 1.
In other words, the terminal point (40) computes the cost-to-go
function looking L − 1 cycles into the future, where L is the pre-
scribed horizon. Then, starting with the computed cost J (Ik,μk),
the DP algorithm (41) computes the sequence of cost-to-go func-
tions by going backward step-by-step till we arrive at the present
cycle time k.

4.3. Special case: dynamic optimization

The DP algorithm of (40) and (41) includes dynamic optimiza-
tion of the FATR as a special case. For the case when there is no
provision of a horizon looking into the future of L � 2, the terminal
point in (41) defines the dynamic optimization algorithm. Then,
there is a single cost-to-go function to be optimized as shown by:

J (Ik,μk) = inf Tr(Pk+1|k+1). (42)

θk∈Pk
In short, the dynamic optimization algorithm encompasses the
feedback transmission path, extending from the cost-to-go func-
tion computed at the receiver output at the previous cycle to the
waveform selection by the transmitter for the next cycle. Most im-
portantly, the whole computation is feasible in an on-line manner
by virtue of setting the horizon depth L = 1.

4.4. Curse of dimensionality

Unfortunately, when we include a horizon depth of L time-steps
into the future in the DP algorithm which is a highly desirable
thing to do, we run into Bellman’s curse-of-dimensionality prob-
lem. To explain this important practical issue, we define the fol-
lowing parameters:

• Nz: the measurement-space dimension,
• Nx: the state-space dimension,
• Ng : the waveform-parameter grid size,
• L: dynamic-programming horizon-depth.

In general, the complexity of the dynamic-programming algo-
rithm for waveform selection is on the order of

O
(
N3

s (2Nz.Ng)
L), (43)

where Ns = max(Nz, Nx), the term N3
s is for the matrix inver-

sions needed for computation of the expected error covariance
matrix, and the term 2Nz is for the number of cubature points
for computation of the expectation operators for computing the
measurements in (41). For this general case, it is assumed that
all individual optimizations in each stage of the DP are performed
over the complete set of waveform-library grid.

We see from (43) that the main source of complexity in the
DP algorithm is attributed to the exponential growth of computa-
tions due to the horizon depth L. More specifically, at each stage
of depth of DP and for each cubature point in (43) a new search
in the waveform library needs to be performed. We refer to such a
complete search of the waveform library as the global search. As L
increases, the level of computation becomes unsustainable.

To mitigate the curse-of-dimensionality problem, we may try to
perform the optimization by searching a local neighborhood of the
current cubature point. In other words, we consider the use of an
explore-exploit strategy for waveform selection by constraining the
DP algorithm to be in a locality of the current cubature point as
well as a limited-size neighborhood in the wave-parameter grid.
Such a strategy requires the use of memory, which is beyond the
scope of FATR.

5. Case study: tracking a falling object in space

5.1. Modeling the scenario of reentry problem

Let us consider an extensively studied problem in the tracking
community, i.e. the reentry problem [2]. A ballistic target reenters
the Earth’s atmosphere after having traveled a long distance, its
speed is high and the remaining time to ground impact is relatively
short. The goal of a tracking radar, in this case, is to intercept and
track a ballistic target shown in Fig. 2. In the reentry phase, two
types of forces are in effect. The most dominant is drag, which
is a function of speed and has a substantial nonlinear variation
in altitude; the second force is due to gravity, which accelerates
the target toward the center of the earth. This tracking problem is
highly difficult because the target’s dynamics change rapidly. Under
the influence of drag and gravity acting on the target, the following
differential equation governs its motion [2]:
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Fig. 2. Geometry of the falling object’s scenario.

ẋ1 = −x2,

ẋ2 = −ρ(x1).g.x2
2

2x3︸ ︷︷ ︸
drag

+g,

ẋ3 = 0, (44)

where x1, x2 and x3 are the altitude, velocity and ballistic coef-
ficient that depends on the target’s mass, shape, cross-sectional
area, and air density, respectively. The term ρ(x1) is air density
and modeled as an exponentially decaying function of x1, given by

ρ(x1) = ρ0 exp(−γ x1),

with the proportionality constant ρ0 = 1.754, γ = 1.49×10−4, and
the gravity g = 9.8 ms−2.

To convert (44) to the state space, we define the state vector as
x = [x1 x2 x3]. The system equation at continuous time t can now
be expressed by

ẋt = g(xt).

Using the Euler approximation with a small integration step δ, we
write

xk+1 = xk + δg(xk) = f(xk). (45)

In order to account for imperfections in the process model (e.g.,
lift force, small variations in the ballistic coefficient, and spinning
motion), we add zero-mean Gaussian process noise, obtaining the
new process equation:

xk+1 = f(xk) + vk, (46)

where we have

f(xk) = Φxk − G
[

D(xk) − g
]

(47)

with matrices

Φ =
⎛
⎝ 1 −δ 0

0 1 0
0 0 1

⎞
⎠ ,

G = [0 δ 0]T

and drag

D(xk) = ρ(xk[1])gx2
k [2]

.

2xk[3]
We assume that the process noise is zero-mean Gaussian with
covariance matrix

Q =

⎛
⎜⎜⎝

q1
δ3

3 q1
δ2

2 0

q1
δ2

2 q1δ 0

0 0 q2δ

⎞
⎟⎟⎠ .

The parameters q1 and q2 control the amount of process noise in
target dynamics and ballistic coefficient, respectively. For our sim-
ulation, we consider that q1 = 0.01, q2 = 0.01 and δ = 1.

5.2. Radar configurations

We use LFM with both up-sweep and down-sweep chirps,
which composes the waveform library with Θ = {λ ∈ [10e–6,

300e–6],b ∈ [−300e8,300e8]} and grid step-size �λ = 10e–6
and �b = 50e8. The bandwidth is set to be 8 MHz. An X-band
radar fixed at (0,0) and operated at a fixed carrier frequency of
10.4 GHz with the speed of electromagnetic wave of 3 × 108 m/s
is employed in this paper. The length of horizon for the FATR is
fixed at two different values L = 1 and L = 2. The traditional active
radar with fixed-waveform is equipped with down-sweep chirp
rate and a pulse duration of λ = 20 μs. The sampling rate is set to
Ts = 100 ms and the simulations are conducted for 50 Monte Carlo
runs. The radar is located at height H = 30 m with horizontal dis-
tance to the track M = 30 km. The measurements at discrete time
k include the range r and the range-rate ṙ, given by

rk =
√

M2 + (xk[1] − H
)2 + wk[1],

ṙk = xk[2](xk[1] − H)√
M2 + (xk[1] − H)2

+ wk[2],

where the measurement noise wk ∼ N (0,Rk).
Assuming that the transmitter and the receiver are co-located,

the received signal energy depends inversely on the fourth power
of the target range r. For this reason, the returned pulse SNR η in
(9) for the target observed at range r was modeled according to

η =
(

r0

r

)4

,

where r0 was the range at which 0 dB SNR was obtained. For our
experiment, r0 was set to be 50 km.

The true initial state of the target is defined as

x0 = [61 km 3048 m/s 19 161]T

and the initial state estimate and its covariance are assumed to be

x̂0|0 = [61.5 km 3400 m/s 19 000]T ,

P0|0 = diag
([

106 104 104]).
5.3. Performance metric

We use the ensemble-averaged root mean-square error (EA-
RMSE) as a metric to evaluate the performance of FATR, compared
to a traditional active radar of fixed waveform. The EA-RMSE is de-
fined as

RMSE-pos.(k) =
√√√√ 1

N

N∑
n=1

((
εn

k − ε̂n
k

)2 + (ηn
k − η̂n

k

)2)
,

where (εn
k , ηn

k ) and (ε̂n
k , η̂n

k ) are the true and estimated positions
at time index k in the n-th Monte Carlo run. In a similar manner,
we may also define the EA-RMSE in velocity.
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Fig. 3. RMSE of altitude for both fore-active tracking radar (FATR and FATR-DP shown
in dotted and solid lines with circle markers) and FWR radar (FWR, shown in dotted
line with diamond markers).

Fig. 4. RMSE of velocity for both fore-active tracking radar (FATR and FATR-DP
shown in dotted and solid lines with circle markers) and FWR (FWR, shown in
dotted line with diamond markers).

5.4. Simulation results

Here we show the simulations results for both the fore-active
tracking radar (FATR) and traditional active radar with fixed-
waveform (FWR) that were first reported in Haykin et al. [10].
Figs. 3 and 4 plot the RMSE for altitude and velocity where we
see that FATR outperforms a traditional active tracking radar with
fixed waveform by an order of magnitude. The results presented in
these two figures demonstrate the information processing power
of partial cognition facilitated by global feedback. Fig. 5 plots the
RMSE for the ballistic coefficient. However, we now see that the
use of global feedback does not make a difference to the accu-
racy of ballistic-coefficient estimation. The reason for lack of im-
provement in this case is the fact that in our experiment the
radar is only equipped with the ability to estimate altitude and
velocity. With no provision made for observing the ballistic co-
efficient, we are in effect confronted with a partially observable
problem.

To illustrate how the partial cognition process has evolved in
the FATR, we have plotted the waveform selection for both the
chirp rate and length of the envelope, shown in Figs. 6 and 7. The
transitions of waveform parameters across time explain a cortex-
like behavior being performed in the FATR.
Fig. 5. RMSE of the target ballistic coefficient for both fore-active tracking radar
(FATR, and FATR-DP shown in dotted and solid lines with circle markers) and FWR
(FWR, shown in dotted line with diamond markers).

Fig. 6. Waveform selection: the chirp rate.

Fig. 7. Waveform selection: the length of envelope.

6. Concluding remarks

In this paper, we have presented the underlying theory of a
fore-active (i.e., partially) cognitive tracking radar and used com-
puter simulations to support the theory, demonstrating the ability
of this new radar concept to significantly outperform a traditional
radar tracker.
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This impressive performance, well illustrated in Figs. 3 and 4,
has exploited the following ideas:

(1) Use of the cubature Kalman filter in the receiver for perception
of the radar environment; this new filter is the best known ap-
proximation to the optimal Bayesian filter under the Gaussian
assumption, an assumption that is justified for the tracking of
targets in space.

(2) Formulation of a new dynamic-programming algorithm for ac-
tion to control the waveform selection in the transmitter. This
novel algorithm derives its information-processing power in
two important ways:
• First, it is based on the notion of imperfect-state information,

which gets around the fact that Bellman’s dynamic program-
ming requires perfect knowledge of the state, whereas in a
real-world radar environment the state is hidden from the
observer.

• Second, clever use is made of the cubature rule of third de-
gree in the approximation of certain integrals involved in
deriving the dynamic-programming algorithm.

In sum, focusing solely on the perception-action cycle of cogni-
tion, this paper has substantiated the ideas of cognitive radar that
were first described in Haykin [8], with the substantiations being
done in the context of a tracking radar application.

In the current approach, in the absence of memory thee is no
provision within the system to utilize the notion of explore and ex-
ploit, i.e. to explore to know where the previous actions are in the
landscape of all actions in order to build a local neighborhood of
search space for next actions. This has resulted in the agile jumps
of the action points in the grid of all possible waveform parameters
(e.g. see Figs. 6 and 7). In a forthcoming paper, we will describe the
expansion of fore-active radar presented here to a cognitive radar
in order to encompass both memory and attention, thereby mak-
ing the radar all the more powerful.
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Appendix A. Notations

• b: the chirp rate of the LFM pulse;
• c: speed of the electromagnetic wave propagation;
• E[·]: statistical expectation operator;
• fc : carrier frequency;
• f (·): system function modeling the state transition;
• g(·): cost function;
• h(·): measurement function modeling the observer;
• Ik: information vector, consisting of the measurements history

and waveform history till time k;
• J : cost-to-go function;
• J: Fisher information matrix;
• L: dynamic-programming horizon-depth;
• n(t): Gaussian noise at the radar receiver input, with ñ(t) de-

noting its complex envelope;
• Ng : the waveform-parameter grid size;
• Nx: the state-space dimension;
• Nz: the measurement-space dimension;
• r(t): received signal at the receiver input from the target con-

taminated by Gaussian noise;
• R(θk−1): measurement-noise covariance matrix at discrete

time k as a function of the transmit waveform parameters
θk−1;
• s̃(t): complex envelope of the transmitted pulse;
• sR(t): received signal reflected from the target;
• sT (t): transmitted radar signal;
• Tr(·): operator extracting the trace of a matrix;
• xk: the state vector at time k;
• zk: the measurement vector at time k;
• Zk � {z0, . . . , zk}: the measurements history;
• ρ: range of the target;
• ρ̇: range rate of the target;
• τ : delay between the transmitted and received signal reflected

by the target;
• μ: policy function mapping the information vector into an ac-

tion;
• ν: Doppler shift associated with target radial motion;
• λ: duration of the Gaussian envelope for the linear frequency

modulation (LFM) chirp transmit signal;
• θk = [λk,bk]: the transmit waveform parameters at time k;
• Θk = [θ0, θ1, . . . , θk]: the waveform history;
• ηr : SNR at the reference distance r.

Appendix B. Derivation of the approximation formula in (37)

To the best of our knowledge, the approximation described
in (37) appeared for the first time in Kershaw and Evans [13];
Therein, however, no derivation was presented for the approxi-
mation. This appendix is intended to fill this gap. For brevity in
notation, henceforth, we omit explicit representation of the de-
pendence of x̂k+1|k+1 on (Ik,xk+1, zk+1, θk), that is, we focus on
the first line of (34) and thus write

g(Ik,μk)

= Exk+1,zk+1|Ik,θk

[
(xk+1 − x̂k+1|k+1)

T (xk+1 − x̂k+1|k+1)
]

(B.1)

= Ezk+1|xk+1,Ik,θk Exk+1|Ik,θk

× [(xk+1 − x̂k+1|k+1)
T (xk+1 − x̂k+1|k+1)

]
(B.2)

where in (B.2), we used the definition of conditional expectation.
The expectation in (B.2) is over the distribution p(zk+1|xk+1,

Ik, θk). Observer that within the measurement prediction and up-
date cycles of the CKF discussed in Section 3, the measurements
are functions of θk solely through the noise covariance R(θk) de-
fined in (12). Recognizing that the parameter vector θk is irrelevant
once the measurement zk is available to the receiver, we are justi-
fied to approximate the distribution p(zk+1|xk+1, Ik, θk) by the pre-
dicted measurement distribution p(zk+1|Ik, θk). In other words, we
may set Ezk+1|xk+1,Ik,θk (·) ≈ Ezk+1|Ik,θk (·), we may therefore write

g(Ik,μk)

≈ Ezk+1|xk+1,Ik,θk Exk+1|Ik,θk

× [(xk+1 − x̂k+1|k+1)
T (xk+1 − x̂k+1|k+1)

]
= Ezk+1|Ik,θk Exk+1|Ik,θk

[
(xk+1 − x̂k+1|k+1)

T (xk+1 − x̂k+1|k+1)
]

= Ezk+1|Ik,θk

[
Exk+1|Ik,θk

[
(xk+1 − x̂k+1|k+1)

T (xk+1 − x̂k+1|k+1)
]]

.

(B.3)

Next, using the identity xT y = Tr(yxT ) and the fact that order
of the expectation and the trace are interchangeable, we may go
on to write

g(Ik,μk)

≈ Ezk+1|Ik,θk

[
Exk+1|Ik,θk

[
(xk+1 − x̂k+1|k+1)

T (xk+1 − x̂k+1|k+1)
]]

= Ezk+1|Ik,θk

[
Tr
(
Exk+1|Ik,θk

× [(xk+1 − x̂k+1|k+1)(xk+1 − x̂k+1|k+1)
T ])]. (B.4)
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By definition, the expression of Tr(·) in (B.4) is the state-
estimation error covariance Pk+1|k+1; hence,

g(Ik,μk) ≈ Ezk+1|Ik,θk

[
Tr(Pk+1|k+1)

]
. (B.5)

Finally nothing that in the CKF, Pk+1|k+1 is independent of the
measurement zk+1, we have arrived at the desired approximation

g(Ik,μk) ≈ Ezk+1|Ik,θk

[
Tr(Pk+1|k+1)

]= Tr(Pk+1|k+1). (B.6)
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