Q3. Derive the Wiener filter (non-causal) for a
stationary process with given spectral
characteristics
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Background
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Figure 1: Signal Flow Diagram

e Goal: filter out noise that has corrupted a signal

e Assumptions:
— Additive noise
— signal and noise are wide-sense stationary processes

— Spectral characteristics are known a prior:.

e Performance criteria: Minimum mean-square error (MMSE).
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Model setup

e The input-output relationship of the linear time-invariant system:

0 / h(r)2(t — 7)dr

h(t) * z(t)
where
— h(t) is the impulse response of the filter

— z(t) is the observed process and related to the unknown signal

process x(t) via

where n(t) is the additive noise.

— 2(t) is the output process.
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Non-causal Wiener Filtering

Under non-causality, past and future observations are known;
hence the Wiener filter(WF) acts as a smoother.

Redefine the goal to estimate
z(t) = E[z(t)[2(§), —00 < § < o0]

The WF minimizes the MSE function:

J = E[(z(t) —&(t)’]
E[(z(t) — [ h(a)z(t — a)da)?]

— 00

Solve the above minimization problem using the orthogonality

principle.
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Orthogonality Principle

e(t) = x(t) — x(t)

Observation
subspace {z(i)}

Figure 2: Projection of signal onto the observation subspace

e [dea: To get the minimum error in the MSE sense, the observation

subspace has to be orthogonal to the estimation-error subspace.
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Orthogonality Principle (Cont’d)

e Using the orthogonality principle we have

E|(z(t) — &(t)z(t — 7)]
E[{x(t) — ffooo h(a)z(t — a)datz(t — 7')]
Elz(t)z(t — 1)) — [70_ h(a)E[z(t — a)z(t — 7)]do

= Ry (1) = /_Oo h(a)E[z(t — a)z(t — 7)]da.

e Substituting ¢t = & + 7 yields

RHS /_ T h(@)E[2(E + 7 — a)2(6)|da

/_OO h(a)R, (T — a)da
h(T) * Ry(T)

e Hence, we get the cross-correlation function:

Rzz(T) =
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Orthogonality (Cont’d)

Taking the F'T yields the cross-power spectral density:
Sz (w)

Further assumptions:

— x(t) and n(t) are independent stochastic processes = zero

cross-correlation.

— n(t) has zero-mean.

Under this assumption, we have
— Ry (1) = Ry (1)
— R.(7) = Ra(7) + Ry (7)
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Orthogonality Principle (Cont’d)
e Lquivalently, taking the FT yields
— Sy (w) = Sp(w)
= 5:(w) = Sz(w) + Sn(w)
e A simplified transfer function of the WF

Sy(w)
Sz(w) 4+ Sn(w)

H(w) =

e Interesting Observations:

— The transfer function is non-zero only where the signal has

power content.

— H(w) = —L1— = emphasizes frequencies where the SNR is

1+ Sz (w)

Sn (w)
large.
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Wiener Filter: Block Diagram
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Figure 3: Time Domain
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Figure 4: Frequency Domain
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Toy Example

Known. R, () = 22T with W = 5 x 10%; S, (w) = 1075

Find S;(w):

otherwise.

WF acts as an ideal LPF.
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Final Remarks

e WF is applied in image restoration.

e WF has the following limitations:
— Not amenable to state-vector estimation problems
— Not applicable to non-stationary signals

— Non-causal WEF's are not suitable for real-time applications
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Thank you!




