
Q3. Derive the Wiener filter (non-causal) for a
stationary process with given spectral

characteristics
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Background
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Figure 1: Signal Flow Diagram

• Goal: filter out noise that has corrupted a signal

• Assumptions:

– Additive noise

– signal and noise are wide-sense stationary processes

– Spectral characteristics are known a priori.

• Performance criteria: Minimum mean-square error (MMSE).
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Model setup

• The input-output relationship of the linear time-invariant system:

x̂(t) =

∫ t

−∞
h(τ)z(t − τ)dτ

= h(t) ∗ z(t)

where

– h(t) is the impulse response of the filter

– z(t) is the observed process and related to the unknown signal

process x(t) via

z(t) = x(t) + n(t)

where n(t) is the additive noise.

– x̂(t) is the output process.



McMaster University 3

Non-causal Wiener Filtering

• Under non-causality, past and future observations are known;

hence the Wiener filter(WF) acts as a smoother.

• Redefine the goal to estimate

x̂(t) = E[x(t)|z(ξ),−∞ < ξ < ∞] (1)

• The WF minimizes the MSE function:

J = E[
(

x(t) − x̂(t)
)2

]

= E[(x(t) −
∫ ∞
−∞ h(α)z(t − α)dα)2]

• Solve the above minimization problem using the orthogonality

principle.
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Orthogonality Principle
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Figure 2: Projection of signal onto the observation subspace

• Idea: To get the minimum error in the MSE sense, the observation

subspace has to be orthogonal to the estimation-error subspace.
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Orthogonality Principle (Cont’d)

• Using the orthogonality principle we have

E
[

(x(t) − x̂(t))z(t − τ)
]

= 0

E
[

{x(t) −
∫

∞

−∞
h(α)z(t − α)dα}z(t − τ)

]

= 0

E[x(t)z(t − τ)] −
∫

∞

−∞
h(α)E[z(t − α)z(t − τ)]dα = 0

⇒ Rxz(τ) =

∫

∞

−∞

h(α)E[z(t − α)z(t − τ)]dα.

• Substituting t = ξ + τ yields

RHS =

∫

∞

−∞

h(α)E[z(ξ + τ − α)z(ξ)]dα

=

∫

∞

−∞

h(α)Rz(τ − α)dα

= h(τ) ∗ Rz(τ)

• Hence, we get the cross-correlation function:

Rxz(τ) = h(τ) ∗ Rz(τ)
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Orthogonality (Cont’d)

• Taking the FT yields the cross-power spectral density:

Sxz(ω) = H(ω)Sz(ω) (2)

• The transfer function of the WF

H(ω) =
Sxz(ω)

Sz(ω)
(3)

• Further assumptions:

– x(t) and n(t) are independent stochastic processes ⇒ zero

cross-correlation.

– n(t) has zero-mean.

• Under this assumption, we have

– Rxz(τ) = Rx(τ)

– Rz(τ) = Rx(τ) + Rn(τ)
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Orthogonality Principle (Cont’d)

• Equivalently, taking the FT yields

– Sxz(ω) = Sx(ω)

– Sz(ω) = Sx(ω) + Sn(ω)

• A simplified transfer function of the WF

H(ω) =
Sx(ω)

Sx(ω) + Sn(ω)
(4)

• Interesting Observations:

– The transfer function is non-zero only where the signal has

power content.

– H(ω) = 1
1+ 1

Sx(ω)
Sn(ω)

⇒ emphasizes frequencies where the SNR is

large.
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Wiener Filter: Block Diagram

Figure 3: Time Domain

Figure 4: Frequency Domain
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Toy Example

W

-W


• Known. Rx(τ) = sin(Wτ)
Wτ

with W = 5 × 103; Sn(ω) = 10−5

• Find Sx(ω):

Sx(ω) =
1

2W

∏

(
2πω

W
)

• Find H(ω):

H(ω) =







1
1.1 , |ω| ≤ W ;

0, otherwise.

• WF acts as an ideal LPF.
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Final Remarks

• WF is applied in image restoration.

• WF has the following limitations:

– Not amenable to state-vector estimation problems

– Not applicable to non-stationary signals

– Non-causal WFs are not suitable for real-time applications



McMaster University 12

References

• A. Papoulis and S. U. Pillai, Probability, Random Variables and

Stochastic Processes, 4th ed., McGraw Hill, 2002.

• K. M. Wong, ECE 762: Detection and Estimation Theory, Course

Notes.

• R. Yates and D. Goodman Probability and Stochastic Processes,

Wiley, 2004.

Thank you!


