Q2. Discuss solution of ill-posed systems of equations with regard to methods

Well (ill)-Posed Problems

- The quality of solution depends on
 - the problem itself and
 - the computer
- According to Hadamard, a problem is well-posed if the solution
 - exists
 - is unique and
 - depends continuously on the data (stable).
- Typically practical inverse problems are all ill-posed.
- Even well-posed problems may be unstable or ill-conditioned when implemented in digital computers.

Solutions for Linear Systems

• A linear system of equations in a matrix form:

Ax = b

where the coefficient matrix $A \in \mathbb{R}^{m \times n}$, the constant vector $b \in \mathbb{R}^m$ and the variable vector $x \in \mathbb{R}^n$.

• Suppose m = n. The solution

$$\hat{x} = A^{-1}b$$

may be disastrous especially when n is large.

• Types of the solution:

– No solution

- Multiple solutions
- Solving methods: decompositions and regularization

Cholesky Decomposition

- Suppose the matrix A is
 - Symmetric and
 - Positive definite
- Decompose A into a unique lower and upper triangular matrices:

$$A = LL^T$$

• On the LHS, we have

$$A\hat{x} = LL^T\hat{x} = L(L^T)\hat{x}$$

• Solve by the forward and backward substitutions:

$$Ly = b$$
$$L^T \hat{x} = y$$

• fast, stable and requires less space!

Truncated SVD

• Decomposes any matrix A as

$$A = UDV^T,$$

where U and V are orthogonal matrices such that $U^{T}U = V^{T}V = I$; D is diagonal with singular values of A.

• If A is non-singular, we write

$$A^{-1} = V\Sigma^{-1}U^T,$$

where $\Sigma^{-1} = [\operatorname{diag}(\frac{1}{\sigma_i})].$

Overdetermined Systems

- More equations than unknowns
- b does not lie in $\mathscr{R}(A) \Rightarrow$ No solution
- Yields the unique solution by minimizing the residual $||Ax b||_2$.
- Using the SVD, we write

$$\min ||Ax - b|| = \min ||U\Sigma V^T - b||$$
$$= \min ||\Sigma V^T x - U^T b||$$
$$= \min ||\Sigma v - \tilde{b}||,$$

where $v = V^T x$ and $\tilde{b} = U^T b$.

• The min. length solution for v is

$$v = \Sigma^+ \tilde{b}.$$

• Hence

$$\hat{x} = V\Sigma^+ \tilde{b} = V\Sigma^+ U^T b.$$

- Summary:
 - Compute the SVD of A: $A = U\Sigma V^T$
 - Zero-out 'small' σ_i 's of Σ .
 - Obtain

$$\hat{x} = V\Sigma^+(U^Tb),$$

where $\Sigma^+ = [\operatorname{diag}(\frac{1}{\sigma_i})].$

Underdetermined Systems

- Effectively, fewer equations than unknowns
- $b \in \mathscr{R}(A) \Rightarrow$ Multiple solutions
- We may choose the smallest norm solution similarly to the overdetermined case.
- Pros:
 - Robust when A is singular or near singular
 - Treats both the underdetermined and overdetermined systems identically
- Cons:
 - Computational more demanding.

Regularized LS method

• To improves the stability, add regularization in the minimization:

$$\hat{x} = \arg \min ||Ax - b||^2 + ||\Gamma x||^2$$

where Γ is the regularization matrix or *Tikhonov* matrix

• Regularized solution:

$$\hat{x} = (A^T A + \Gamma^T \Gamma)^{-1} A^T b$$

• $\Gamma = 0 \Rightarrow$ Conventional LS solution.

Choice of Γ Using the KF Theory

• Perceive the following to be the measurement equation:

$$b_k = Ax_k + w_k$$

- Suppose $\hat{x}_{k|k-1} \sim \mathcal{N}(0, \sigma_x^2 I)$, and $w_k \sim \mathcal{N}(0, \sigma_b^2 I)$.
- Then the updated state:

$$\begin{aligned} \hat{x}_{k|k} &= \hat{x}_{k|k-1} + W(b_k - b_{k|k-1}) \\ \hat{x} &= Wb \\ &= \left[A^T (\sigma_b^2 I)^{-1} A + (\sigma_x^2 I)^{-1} \right]^{-1} A^T (\sigma_b^2 I)^{-1} b \\ &= \frac{1}{\sigma_b^2} \left[\frac{1}{\sigma_b^2} A^T A + \frac{1}{\sigma_x^2} I \right]^{-1} A^T b \\ &= \left[A^T A + \left(\frac{\sigma_b}{\sigma_x} \right)^2 I \right]^{-1} A^T b \end{aligned}$$

• The above expression suggests to choose Γ to be $\Gamma = \alpha I$, where $\alpha = \frac{\sigma_b}{\sigma_x}$.

Pseudo-inverses

- works well for full-rank matrix A.
- Case (i): Overdetermined systems
 - Yields the unique solution in the minimum residual, ||Ax b|| sense.
 - Write

$$A^T A \hat{x} = A^T b$$

- As $A^T A$ is non-singular, we get

$$\hat{x} = A^+ b,$$

where the pseudo-inverse matrix

$$A^+ = (A^T A)^{-1} A^T.$$

Pseudo-inverse (Cont'd)

- Case (ii): Underdetermined systems
 - Yields the unique solution in the smallest length, ||x|| sense:

$$\hat{x} = A^+ b,$$

where the pseudo-inverse matrix

$$A^+ = A^T (AA^T)^{-1}.$$

- Limitations:
 - $-A^T A$ may be singular or near-singular
 - matrix-squared form may amplify roundoff errors !
 - Remedy: Use the SVD on $A^T A$ or the QR on A directly.

QR Decomposition in Pseudo-inverses

• Decompose A into

$$A = QR,$$

where R is upper triangular; Q is orthogonal such that $QQ^T = I$.

• For an overdetermined case,

$$\hat{x} = (A^T A)^{-1} A^T b$$

$$= (R^T Q^T Q R)^{-1} R^T Q^T b$$

$$= (R^T R)^{-1} R^T Q^T b = R^{-1} Q^T b$$

$$\Rightarrow R \hat{x} = \underbrace{Q^T b}_{\text{rotate}}$$

• Use back substitution to get the stable solution.

References

- J. Reilly, ECE 712:Matrix Computations for Signal Processing, Course notes.
- G. Golub and C. Van Loan, *Matrix Computations*, John Hopkins, 1996.
- T. Moon and W. Stirling, *Mathematical Methods and Algorithms*, Prentice-Hall, 2001.