Q2. Discuss solution of ill-posed systems of
equations with regard to methods
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Well (ill)-Posed Problems

The quality of solution depends on
— the problem itself and

— the computer

According to Hadamard, a problem is well-posed if the solution
— exists

— is unique and

— depends continuously on the data (stable).

Typically practical inverse problems are all ill-posed.

Even well-posed problems may be unstable or ill-conditioned when

implemented in digital computers.
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Solutions for Linear Systems

A linear system of equations in a matrix form:
Ar = b

where the coefficient matrix A € R™*", the constant vector b € R™

and the variable vector x € R".
Suppose m = n. The solution

= A7
may be disastrous especially when n is large.

Types of the solution:
— No solution

— Multiple solutions

Solving methods: decompositions and regularization
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Cholesky Decomposition

Suppose the matrix A is
— Symmetric and

— Positive definite

Decompose A into a unique lower and upper triangular matrices:
A = LL'
On the LHS, we have
A = LL'%z =L
Solve by the forward and backward substitutions:
= b
Y

fast, stable and requires less space!
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Truncated SVD

e Decomposes any matrix A as
A = UDV',

where U and V are orthogonal matrices such that
U'U = VTV =1I; D is diagonal with singular values of A.

e If A is non-singular, we write

AN = veTiut,

where X1 = [dlag(%)]
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Overdetermined Systems

More equations than unknowns
b does not lie in Z(A) = No solution
Yields the unique solution by minimizing the residual ||Az — b||2.
Using the SVD, we write

min || Az — b|| in [|[USVT — b
SV©Eie — Uyl
Sv — bl

where v = VTx and b = U”b.
The min. length solution for v is

= Y.
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Vyth = vetuTh.

e Summary:
— Compute the SVDof A: A=UXV"
— Zero-out ‘small’ ¢;’s of X..

— Obtain

r = VvVt U,

where Xt = [diag(2)].

04
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Underdetermined Systems

Effectively, fewer equations than unknowns
be #Z(A) = Multiple solutions

We may choose the smallest norm solution similarly to the

overdetermined case.

Pros:

— Robust when A is singular or near singular

— Treats both the underdetermined and overdetermined systems
identically

Cons:

— Computational more demanding.
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Regularized LS method

To improves the stability, add regularization in the minimization:
7 = arg min ||Az — b||* + ||Tz||?
where I' is the regularization matrix or Tikhonov matrix

Regularized solution:
= (ATA4+TID) 1Ay

e [' =0 = Conventional LS solution.
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Choice of I' Using the KF Theory

e Perceive the following to be the measurement equation:
b, = Axp+ wy

e Suppose &gp_1 ~ N(0,021), and wy, ~ N(0,0.1).
e Then the updated state:

P Erie—1 + Wbk — brjp_1)
x Wb

[AT<a§I>—1A+< 2D AT (o)
1 1
[ LATA Ltams

o ab o2

(AT A+ (Z2)21] 71 AT

Oz

e The above expression suggests to choose I' to be I' = al, where
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Pseudo-inverses
e works well for full-rank matrix A.

e Case (i): Overdetermined systems

— Yields the unique solution in the minimum residual, ||Az — b||

SEI1SEe.

— Write
AtAz = A'b
— As AT A is non-singular, we get
& = A'b,

where the pseudo-inverse matrix

AT = (ATA) 1AL,
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Pseudo-inverse (Cont’d)

e Case (ii): Underdetermined systems

— Yields the unique solution in the smallest length, ||z|| sense:
& = ATb,

where the pseudo-inverse matrix

AT = AlaahH

e Limitations:
— AT A may be singular or near-singular

— matrix-squared form may amplify roundoff errors !

— Remedy: Use the SVD on AT A or the QR on A directly.
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QR Decomposition in Pseudo-inverses

e Decompose A into
A = QR,
where R is upper triangular; () is orthogonal such that QQ' = I.

e For an overdetermined case,

r = (ATA)"taTy

(RTQTQR)—lRTQTb

(RTR)_lRTQTb _ R—lQTb
Qb

——

rotate

e Use back substitution to get the stable solution.
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Thank you!




