
Q2. Discuss solution of ill-posed systems of
equations with regard to methods
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Well (ill)-Posed Problems

• The quality of solution depends on

– the problem itself and

– the computer

• According to Hadamard, a problem is well-posed if the solution

– exists

– is unique and

– depends continuously on the data (stable).

• Typically practical inverse problems are all ill-posed.

• Even well-posed problems may be unstable or ill-conditioned when

implemented in digital computers.
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Solutions for Linear Systems

• A linear system of equations in a matrix form:

Ax = b

where the coefficient matrix A ∈ R
m×n, the constant vector b ∈ R

m

and the variable vector x ∈ R
n.

• Suppose m = n. The solution

x̂ = A−1b

may be disastrous especially when n is large.

• Types of the solution:

– No solution

– Multiple solutions

• Solving methods: decompositions and regularization
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Cholesky Decomposition

• Suppose the matrix A is

– Symmetric and

– Positive definite

• Decompose A into a unique lower and upper triangular matrices:

A = LLT

• On the LHS, we have

Ax̂ = LLT x̂ = L(LT )x̂

• Solve by the forward and backward substitutions:

Ly = b

LT x̂ = y

• fast, stable and requires less space!
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Truncated SVD

• Decomposes any matrix A as

A = UDV T ,

where U and V are orthogonal matrices such that

UT U = V T V = I; D is diagonal with singular values of A.

• If A is non-singular, we write

A−1 = V Σ−1UT ,

where Σ−1 = [diag( 1
σi

)].
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Overdetermined Systems

• More equations than unknowns

• b does not lie in R(A) ⇒ No solution

• Yields the unique solution by minimizing the residual ||Ax − b||2.

• Using the SVD, we write

min ||Ax − b|| = min ||UΣV T − b||

= min ||ΣV T x − UT b||

= min ||Σv − b̃||,

where v = V T x and b̃ = UT b.

• The min. length solution for v is

v = Σ+b̃.
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• Hence

x̂ = V Σ+b̃ = V Σ+UT b.

• Summary:

– Compute the SVD of A : A = UΣV T

– Zero-out ‘small’ σi’s of Σ.

– Obtain

x̂ = V Σ+(UT b),

where Σ+ = [diag( 1
σi

)].
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Underdetermined Systems

• Effectively, fewer equations than unknowns

• b ∈ R(A) ⇒ Multiple solutions

• We may choose the smallest norm solution similarly to the

overdetermined case.

• Pros:

– Robust when A is singular or near singular

– Treats both the underdetermined and overdetermined systems

identically

• Cons:

– Computational more demanding.
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Regularized LS method

• To improves the stability, add regularization in the minimization:

x̂ = arg min ||Ax − b||2 + ||Γx||2

where Γ is the regularization matrix or Tikhonov matrix

• Regularized solution:

x̂ = (AT A + ΓT Γ)−1AT b

• Γ = 0 ⇒ Conventional LS solution.
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Choice of Γ Using the KF Theory

• Perceive the following to be the measurement equation:

bk = Axk + wk

• Suppose x̂k|k−1 ∼ N (0, σ2
xI), and wk ∼ N (0, σ2

b
I).

• Then the updated state:

x̂k|k = x̂k|k−1 + W (bk − b̂k|k−1)

x̂ = Wb

=
[
A

T (σ2

b
I)−1

A + (σ2

xI)−1
]−1

A
T (σ2

b
I)−1

b

=
1

σ2

b

[ 1

σ2

b

A
T

A +
1

σ2
x

I
]−1

A
T

b

=
[
A

T
A +

( σb
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)2I
]−1
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T

b

• The above expression suggests to choose Γ to be Γ = αI, where

α = σb

σx
.
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Pseudo-inverses

• works well for full-rank matrix A.

• Case (i): Overdetermined systems

– Yields the unique solution in the minimum residual, ||Ax − b||

sense.

– Write

AT Ax̂ = AT b

– As AT A is non-singular, we get

x̂ = A+b,

where the pseudo-inverse matrix

A+ = (AT A)−1AT .
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Pseudo-inverse (Cont’d)

• Case (ii): Underdetermined systems

– Yields the unique solution in the smallest length, ||x|| sense:

x̂ = A+b,

where the pseudo-inverse matrix

A+ = AT (AAT )−1.

• Limitations:

– AT A may be singular or near-singular

– matrix-squared form may amplify roundoff errors !

– Remedy: Use the SVD on AT A or the QR on A directly.
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QR Decomposition in Pseudo-inverses

• Decompose A into

A = QR,

where R is upper triangular; Q is orthogonal such that QQT = I.

• For an overdetermined case,

x̂ = (AT A)−1AT b

= (RT QT QR)−1RT QT b

= (RT R)−1RT QT b = R−1QT b

⇒ Rx̂ = QT b
︸︷︷︸

rotate

• Use back substitution to get the stable solution.
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Thank you!


