Q2. Discuss solution of ill-posed systems of equations with regard to methods

Well (ill)-Posed Problems

- The quality of solution depends on
- the problem itself and
- the computer
- According to Hadamard, a problem is well-posed if the solution
- exists
- is unique and
- depends continuously on the data (stable).
- Typically practical inverse problems are all ill-posed.
- Even well-posed problems may be unstable or ill-conditioned when implemented in digital computers.

Solutions for Linear Systems

- A linear system of equations in a matrix form:

$$
A x=b
$$

where the coefficient matrix $A \in \mathbb{R}^{m \times n}$, the constant vector $b \in \mathbb{R}^{m}$ and the variable vector $x \in \mathbb{R}^{n}$.

- Suppose $m=n$. The solution

$$
\hat{x}=A^{-1} b
$$

may be disastrous especially when n is large.

- Types of the solution:
- No solution
- Multiple solutions
- Solving methods: decompositions and regularization

Cholesky Decomposition

- Suppose the matrix A is
- Symmetric and
- Positive definite
- Decompose A into a unique lower and upper triangular matrices:

$$
A=L L^{T}
$$

- On the LHS, we have

$$
A \hat{x}=L L^{T} \hat{x}=L\left(L^{T}\right) \hat{x}
$$

- Solve by the forward and backward substitutions:

$$
\begin{aligned}
L y & =b \\
L^{T} \hat{x} & =y
\end{aligned}
$$

- fast, stable and requires less space!

Truncated SVD

- Decomposes any matrix A as

$$
A=U D V^{T}
$$

where U and V are orthogonal matrices such that $U^{T} U=V^{T} V=I ; D$ is diagonal with singular values of A.

- If A is non-singular, we write

$$
A^{-1}=V \Sigma^{-1} U^{T}
$$

where $\Sigma^{-1}=\left[\operatorname{diag}\left(\frac{1}{\sigma_{i}}\right)\right]$.

Overdetermined Systems

- More equations than unknowns
- b does not lie in $\mathscr{R}(A) \Rightarrow$ No solution
- Yields the unique solution by minimizing the residual $\|A x-b\|_{2}$.
- Using the SVD, we write

$$
\begin{aligned}
\min \|A x-b\| & =\min \left\|U \Sigma V^{T}-b\right\| \\
& =\min \left\|\Sigma V^{T} x-U^{T} b\right\| \\
& =\min \|\Sigma v-\tilde{b}\|,
\end{aligned}
$$

where $v=V^{T} x$ and $\tilde{b}=U^{T} b$.

- The min. length solution for v is

$$
v=\Sigma^{+} \tilde{b}
$$

- Hence

$$
\hat{x}=V \Sigma^{+} \tilde{b}=V \Sigma^{+} U^{T} b .
$$

- Summary:
- Compute the SVD of $A: \quad A=U \Sigma V^{T}$
- Zero-out 'small' σ_{i} 's of Σ.
- Obtain

$$
\hat{x}=V \Sigma^{+}\left(U^{T} b\right),
$$

where $\Sigma^{+}=\left[\operatorname{diag}\left(\frac{1}{\sigma_{i}}\right)\right]$.

Underdetermined Systems

- Effectively, fewer equations than unknowns
- $b \in \mathscr{R}(A) \Rightarrow$ Multiple solutions
- We may choose the smallest norm solution similarly to the overdetermined case.
- Pros:
- Robust when A is singular or near singular
- Treats both the underdetermined and overdetermined systems identically
- Cons:
- Computational more demanding.

Regularized LS method

- To improves the stability, add regularization in the minimization:

$$
\hat{x}=\arg \min \|A x-b\|^{2}+\|\Gamma x\|^{2}
$$

where Γ is the regularization matrix or Tikhonov matrix

- Regularized solution:

$$
\hat{x}=\left(A^{T} A+\Gamma^{T} \Gamma\right)^{-1} A^{T} b
$$

- $\Gamma=0 \Rightarrow$ Conventional LS solution.

Choice of Γ Using the KF Theory

- Perceive the following to be the measurement equation:

$$
b_{k}=A x_{k}+w_{k}
$$

- Suppose $\hat{x}_{k \mid k-1} \sim \mathcal{N}\left(0, \sigma_{x}^{2} I\right)$, and $w_{k} \sim \mathcal{N}\left(0, \sigma_{b}^{2} I\right)$.
- Then the updated state:

$$
\begin{aligned}
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+W\left(b_{k}-\hat{b}_{k \mid k-1}\right) \\
\hat{x} & =W b \\
& =\left[A^{T}\left(\sigma_{b}^{2} I\right)^{-1} A+\left(\sigma_{x}^{2} I\right)^{-1}\right]^{-1} A^{T}\left(\sigma_{b}^{2} I\right)^{-1} b \\
& =\frac{1}{\sigma_{b}^{2}}\left[\frac{1}{\sigma_{b}^{2}} A^{T} A+\frac{1}{\sigma_{x}^{2}} I\right]^{-1} A^{T} b \\
& =\left[A^{T} A+\left(\frac{\sigma_{b}}{\sigma_{x}}\right)^{2} I\right]^{-1} A^{T} b
\end{aligned}
$$

- The above expression suggests to choose Γ to be $\Gamma=\alpha I$, where $\alpha=\frac{\sigma_{b}}{\sigma_{x}}$.

Pseudo-inverses

- works well for full-rank matrix A.
- Case (i): Overdetermined systems
- Yields the unique solution in the minimum residual, $\|A x-b\|$ sense.
- Write

$$
A^{T} A \hat{x}=A^{T} b
$$

- As $A^{T} A$ is non-singular, we get

$$
\hat{x}=A^{+} b,
$$

where the pseudo-inverse matrix

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

Pseudo-inverse (Cont'd)

- Case (ii): Underdetermined systems
- Yields the unique solution in the smallest length, $\|x\|$ sense:

$$
\hat{x}=A^{+} b,
$$

where the pseudo-inverse matrix

$$
A^{+}=A^{T}\left(A A^{T}\right)^{-1}
$$

- Limitations:
- $A^{T} A$ may be singular or near-singular
- matrix-squared form may amplify roundoff errors !
- Remedy: Use the SVD on $A^{T} A$ or the QR on A directly.

QR Decomposition in Pseudo-inverses

- Decompose A into

$$
A=Q R
$$

where R is upper triangular; Q is orthogonal such that $Q Q^{T}=I$.

- For an overdetermined case,

$$
\begin{aligned}
\hat{x} & =\left(A^{T} A\right)^{-1} A^{T} b \\
& =\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} b \\
& =\left(R^{T} R\right)^{-1} R^{T} Q^{T} b=R^{-1} Q^{T} b \\
\Rightarrow R \hat{x} & =\underbrace{Q^{T} b}_{\text {rotate }}
\end{aligned}
$$

- Use back substitution to get the stable solution.

References

- J. Reilly, ECE 712:Matrix Computations for Signal Processing, Course notes.
- G. Golub and C. Van Loan, Matrix Computations, John Hopkins, 1996.
- T. Moon and W. Stirling, Mathematical Methods and Algorithms, Prentice-Hall, 2001.

Thank you!

