
Q1. Discuss the evaluation of covariance
matrices in relation to Kalman and extended

Kalman filtering
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Problem Setup

• The KF assumes the following dynamic state-space model:

Process equation: xk = Fkxk−1 + vk−1

Measurement equation: zk = Hkxk + wk

• Assumptions:

– Additive uncorrelated Gaussian noise sequences with known

statistics. i.e., vk ∼ N (0, Qk−1) and wk ∼ N (0, Rk)

– Known initial estimate. i.e., x0 ∼ N (x̂0|0, P0|0)

• Objective: Estimate the state at time k recursively given

{z1, z2, . . . zk}.

• Performance criteria: Minimum mean-square error.
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Two Basic Operations

• Predict:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk−1

• Correct:

ẑk|k−1 = Hkx̂k|k−1

Sk|k−1 = HkPk|k−1H
T
k + Rk

Wk = Pk|k−1H
T
k S−1

k|k−1

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1)

Pk|k = Pk|k−1 − WkHkPk|k−1
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Error Covariances: Analysis

• As a self-assessment of its own errors, the KF yields the error

covariance matrices:

– state ⇒predicted and posterior error covariances

– measurement ⇒ innovation covariance

• Why we evaluate covariances?

– To verify the credibility of the filter: if the actual error is

consistent with the filter-computed error?

– To compare various filter performances

– To probe into modeling errors
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Error Covariances (Cont’d)

• Tools for evaluation:

– Mean-Squared Error (MSE)

– Posterior Cramer-Rao Lower Bound (PCRLB)

– Normalized Innovation-Squared (NIS)

– Normalized Estimation Error-squared(NEES)

• The PCRLB and the NIS can be used in real-time applications.
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Mean-Squared Error

• Given the true state xk, the MSE (matrix) of the filter estimate is

defined by

MSE(k) = E((xk − x̂k|k)(xk − x̂k|k)
T )

• The gain-posterior covariance relationship: Wk = Pk|kH
T R−1.

• 3 practical cases:

– Pk|k = MSE(k) ⇒ optimal

– Pk|k > MSE(k) ⇒ pessimistic

– Pk|k < MSE(k) ⇒ optimistic

• MSE = variance + bias-squared (in a scalar case).
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PCRLB

• The covariance matrix Pk|k of an unbiased state estimator x̂k|k has

a lower bound

Pk|k � J−1
k

where the Fisher information matrix

Jk = D22
k−1 − D21

k−1

(
Jk−1 + D11

k−1

)−1
D12

k−1 (k > 0)

where

D11

k−1
= −E

{
∇xk−1

[
∇xk−1

ln p(xk|xk−1)
]T

}

D21

k−1
= −E

{
∇xk−1

[∇xk
ln p(xk|xk−1)]T

}

D12

k−1
= −E

{
∇xk

[
∇xk−1

ln p(xk|xk−1)
]T

}
=

[
D21

k−1

]T

D22

k−1
= −E

{
∇xk

[∇xk
ln p(xk|xk−1)]T

}
− E

{
∇xk

[∇xk
ln p(zk|xk)]T

}
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PCRLB for the KF

• For the LG case, information matrices

D11
k−1 = F T

k−1Q
−1
k−1Fk−1

D12
k−1 = [D21

k−1]
T = −F T

k−1Q
−1
k−1

D22
k−1 = Q−1

k−1 + HT
k R−1

k Hk

• Hence we get the Fisher information matrix at time k as

Jk = Q−1
k−1 − Q−1

k−1Fk−1

(
Jk−1 + F T

k−1Q
−1
k−1Fk−1

)−1
F T

k−1Q
−1
k−1 + Jz

k

=
(
Qk−1 + Fk−1J

−1
k−1F

T
k−1

)−1
+ HT

k R−1
k Hk

• Obtain the same when replacing Jk with P−1
k|k

⇒ KF is an efficient

estimator for a linear-Gaussian system.
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Credibility Check on Innovation Covariance

• Properties of innovation sequences

– zero-mean Gaussian

– uncorrelated.

• Define normalized innovation-squared (NIS):

ǫ(k) = νT
k S−1

k|k
νk

where the innovation and its covariance

νk = (zk − ẑk|k−1)

Sk|k−1 = cov(νk)

• Distribution of ǫ(k):

ǫ(k) ∼ χ2
m

where m is the measurement-vector dimension or the dof.
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Credibility Check ( Cont’d)

• Postulate the null hypothesis

H0 : E[ǫ(k)] = m.

• Accept both the innovation and its covariance commensurate with

theoretical results if

ǫ(k) ∈ [r1, r2]

• The acceptance interval [r1 r2] is determined such that

P (ǫ(k) ∈ [r1 r2]|H0) = 1 − α

where α is the level of significance.

• For α = 0.05, the limits

r1,2 ≈ 1

2m

(
± 1.96 +

√
2m − 1

)2
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Remarks

• For an unbiased estimator, the NIS check is directly comparable to

a credibility check on the innovation covariance.

• In an N Monte Carlo runs, we use the averaged NIS statistics.
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Credibility Check on Posterior Error Covariance

• Define normalized estimation error-squared (NEES):

ǫ(k) = x̃T
k P−1

k|k
x̃k

where the estimation error

x̃k = (xk − x̂k|k)

• Distribution of ǫ(k):

ǫ(k) ∼ χ2
n

where n is the state-vector dimension.

• Following a similar procedure as in the NIS case, we may check the

credibility of filter-estimated covariance at an α level.
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Extended Kalman Filters

• The EKF assumes the following dynamic state-space model:

Process equation: xk = f(xk−1) + vk−1 (1)

Measurement equation: zk = h(xk) + wk (2)

• Idea: Linearize nonlinear functions using the first-order Taylor

series expansion.

• Let x ∼ N (x̄,Σx). Then we write y, where y = f(x) as

y = f(x) ≈ f(x̄) + F (x − x̄)︸ ︷︷ ︸
linear

,

where the Jacobian

F = [∇xf(x)T ]Tx=x̄.
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EKF (Cont’d)

• Approximates y to be Gaussian with the following mean and

covariance:

ȳ = E(f(x))

≈ f(x̄)

Σy ≈ FΣxF T .
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Final Remarks

• For a nonlinear system, all conditional densities are non-Gaussian.

However all the above methods assume Gaussianity suggesting that

they wont fully characterize a nonlinear filter accuracy

• EKF estimate is biased ⇒ Pk|k < MSE

• To meet the condition of zero-mean error (unbiased mean error),

we subtract off mean errors before applying the NIS or NEES.

• In the EKF case, the information matrices of the CRLB are given
by:

D11

k−1
= E(F T

k−1
Q−1

k−1
Fk−1)

D12

k−1
= [D21

k−1
]T = −E(F T

k−1
)Q−1

k−1

D22

k−1
= Q−1

k−1
+ E(HT

k
R−1

k
Hk)

where F and H are Jacobians of the state and measurement

functions.

• The expectation operators are replaced by Monte Carlo averages
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(useful in simulations!)
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Thank you!


