Q1. Discuss, compare and contrast various curve fitting and interpolation methods

Curve Fitting

- Problem statement: Given a set of $(n+1)$ point-pairs $\left\{x_{i}, y_{i}\right\}, i=0,1, \ldots n$, find an analytic, smooth curve in the interval $\left[x_{0}, x_{n}\right]$.
- Why we perform curve fitting?
- To get estimates at some intermediate points
- To produce a simplified version of a more complicated function
- Methods:
- Interpolation for clean data:
* Lagrange
* Newton's divided-difference
* Splines
- Regression for noisy data:
* Linear, Polynomial ...

Interpolation: Direct Approach

- To fit exactly $(n+1)$ data points, use the polynomial of degree n :

$$
P_{n}=c_{0}+c_{1} x \ldots+c_{n} x^{n}
$$

- Find c_{i} by solving the linear system of equations:

$$
\left(\begin{array}{cccc}
1 & x_{0} & \ldots & x_{0}^{n} \\
1 & x_{1} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- Caution: Not advisable to solve this system owing to the matrix-inversion!
- Do we have any inversion-free methods ?

Lagrange Interpolation

- An n-th degree Lagrange basis polynomial:

$$
\phi_{i}(x)=\frac{\prod_{j=0, j \neq i}^{n}\left(x-x_{j}\right)}{\prod_{j=0, j \neq i}^{n}\left(x_{i}-x_{j}\right)} \quad i=0,1, \ldots n
$$

- Hence the Lagrange's interpolating polynomial is

$$
P_{n}(x)=\sum_{i=0}^{n} c_{i} \phi_{i}(x)
$$

- $\phi_{i}(x)$ has the property:

$$
\phi_{i}\left(x_{k}\right)= \begin{cases}1, & i=k \\ 0, & i \neq k\end{cases}
$$

Lagrange (Cont'd)

- Using the above property, we get the coefficients

$$
c_{i}=y_{i}
$$

hence much simpler to find coefficients!

- Limitations:
- Redo the whole procedure when adding/deleting a point \Rightarrow works bad with unknown order.
- Divisions present in computing the Lagrange polynomial are expensive

Newton's Divided Difference Polynomial

- An i-th order Newton basis polynomial:

$$
\phi_{i}(x)=\prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

- The interpolating polynomial in terms of Newton's basis:

$$
P_{n}(x)=\sum_{i=0}^{n} c_{i} \phi_{i}(x)
$$

- Get the Coefficients:

$$
c_{i}=\left[y_{0}, \ldots y_{i}\right]
$$

where $\left[y_{0}, \ldots y_{i}\right]$ is the notation for an $(i+1)$-th order divided difference.

Newton (Cont'd)

- Virtues:
- For equally spaced data points, replace the divided differences with functional differences.
- Less arithmetic operations in writing the polynomial than that of Lagrangian.
- Easy to add/delete a point \Rightarrow works well for an unknown order
- All the above methods yield the same results for a given set of points. However, for larger n, they all suffer from the Runge's phenomenon.

Runge's Phenomenon

- Is the error is always guaranteed to diminish with increasing polynomial order? No!
- Runge observed an increasing oscillatory behavior when using polynomial interpolation with polynomials of high degree.
- Why?
- The error between the generating function and the interpolating polynomial of order n is bounded by the n-th derivative of the generating function. For Runge-type functions (e.g., $f(x)=\frac{1}{1+25 x^{2}}$), the magnitude of the derivative increases.

Figure 1: Runge Phenomenon in a nutshell (Runge function-red, 5thorder polynomial-blue, 9th-order polynomial-green)

Splines

- Local approach dividing into sub-intervals and fit to a low-order polynomial while preserving the following properties:
- Continuity at the boundary
- Slope continuity at the boundary
- Curvature continuity at the boundary ...
- Spline candidates:
- Linear
- Quadratic
- Cubic
- Useful for functions with local abrupt changes

Linear Splines

Linear Splines

Local Interpolation
Cubic Splines

$$
\begin{gathered}
f(x)=f\left(x_{n-1}\right)+m_{n-1}\left(x-x_{n-1}\right), x_{n-1} \leq x \leq x_{n} \\
m_{i}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\left.x_{i+1}\right)-x_{i}}
\end{gathered}
$$

Quadratic Splines

Quadratic Splines

$$
f_{i}(x)=a_{i} x^{2}+b_{i} x+c_{i}, x_{i-1} \leq x \leq x_{i} \quad \text { 3n coefficients }
$$

Continuity

$$
\begin{aligned}
a_{i-1} x_{i-1}^{2}+b_{i-1} x_{i-1}+c_{i-1} & =f\left(x_{i-1}\right) \\
a_{i} x_{i-1}^{2}+b_{i} x_{i-1}+c_{i} & =f\left(x_{i-1}\right)
\end{aligned} \quad \text { 2(n-1) conditions }
$$

End Conditions

$$
\begin{array}{cc}
a_{1} x_{0}^{2}+b_{1} x_{0}+c_{1}=f\left(x_{0}\right) & 2 \text { conditions }-2 \mathrm{n} \text { total } \\
a_{n} x_{n}^{2}+b_{n} x_{n}+c_{n}=f\left(x_{n}\right) & \\
\text { Derivatives } & \\
f_{i}^{\prime}(x)=2 a_{i} x+b_{i} & \mathrm{n}-1 \text { conditions }-3 \mathrm{n}-1 \text { total } \\
2 a_{i-1} x_{i-1}+b_{i-1}=2 a_{i} x_{i-1}+b_{i} & 1 \text { condition }-3 \mathrm{n} \text { total }
\end{array}
$$

Cubic Splines

- Cubic spline of the form:

$$
f_{i}(x)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x+d_{i} \quad x_{i-1} \leq x \leq x_{i}
$$

- Find $4 n$ unknowns from the following conditions:

1. Continuity: $2(n-1)$ conditions
2. End: 2 conditions
3. Slope continuity: $(n-1)$ conditions
4. Curvature continuity: $(n-1)$ conditions
5. Curvature at end points: 2 conditions

Linear Regression

- Assumptions:
- We look for a general trend of the data set
- Noisy data are available in large scale
- Fitted model:

$$
f(x)=a_{0}+a_{1} x
$$

- Objective function: Sum of error-squared:

$$
J\left(a_{0}, a_{1}\right)=\sum_{i=0}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Linear Regression (Cont'd)

- To find the unknown coefficients, set the partial derivatives to be zero:

$$
\begin{aligned}
& \frac{\partial J}{\partial a_{0}}=-2 \sum_{i}\left(y_{i}-a_{0}-a_{1} x_{i}\right)=0 \\
& \frac{\partial J}{\partial a_{1}}=-2 \sum_{i}\left[y_{i}-a_{0}-a_{1} x_{i}\right] x_{i}=0
\end{aligned}
$$

- Rearrange the above to get

$$
\left(\begin{array}{cc}
n+1 & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right)\binom{a_{0}}{a_{1}}=\binom{\sum y_{i}}{\sum x_{i} y_{i}}
$$

- For the above case, the coefficient matrix $A=B B^{T} \Rightarrow B B^{T}[a]=B y$. Solve the above system using the SVD or Cholesky.

References

- C. F. Gerald \& P. O. Wheatley, Applied numerical analysis, Pearson, 2004.
- S. Chapra \& R. Cannale, Numerical methods for engineers, 2006.

Thank you!

Q2. Discuss notion of statistical independence for pair of events, and corresponding situation for multivariate distribution

Events and Probabilities

- The sample space, Ω of an experiment consists of all possible mutually exclusive outcomes.
- An event is a set of outcomes.
- The probability of an event A :

$$
P(A)=\lim _{N \rightarrow \infty} \frac{\text { No. outcomes of A, } N_{A}}{\text { No. trials, } N}
$$

- Ex. Tossing a fair coin.

$$
\begin{aligned}
\Omega & =\{H, T\} \\
A & =\{H\} \\
\text { Hence, } P(A)=\frac{1}{2} &
\end{aligned}
$$

Independent Events

- Definition: Two events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- Interpretation:
- On the LHS, $A \cap B \Rightarrow$ the event that joint/both events A and B occur.
- On the RHS, we have the product of the probabilities of the individual events/marginals.
- Intuitively it means that the occurrence of one event does not alter the occurrence probability of the other!

More Insight from the Conditional Probability

- Definition: The conditional probability $P(B \mid A)$ is the the probability of event B given that A has occurred:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

provided $P(A) \neq 0$.

- If A and B are independent \Rightarrow

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)
$$

- Interpretation: The event A does not improve our knowledge about the occurrence of B. It makes no difference to B if A has occurred or not.

Toy Example

- Experiment: Toss a coin twice.
- Let A and B be the events of getting head in the first and the second trial, respectively.
- Are the two events independent? Our intuition says Yes !
- Verify from the definition:

$$
\begin{aligned}
P(A) & =P(H H)+P(H T)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
P(B) & =P(H H)+P(T H)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
\text { But, } P(A \cap B) & =P(H H)=\frac{1}{4}=P(A) P(B)
\end{aligned}
$$

- Hence they are independent as expected!

Mutual Exclusiveness and Independence

- Not synonyms!
- If the events A and B are mutually exclusive \Rightarrow
- From the set theory: $A \cap B=\phi$.
- From the probabilistic point of view:

$$
\begin{aligned}
P(A \cap B) & =0 \\
\text { or } P(B \mid A) & =\frac{P(B \cap A)}{P(A)}=0
\end{aligned}
$$

- Occurrence of $\mathrm{A} \Rightarrow \mathrm{B}$ has definitely not occurred $\Rightarrow \mathrm{A}$ nice piece of information!
- Two mutually exclusive events are dependent except they are zero-probabilistic.

Mutual Exclusiveness (Cont'd)

- How we benefit from these two notions?
- Mutually exclusive \Rightarrow add probabilities to get joint probability
- Independent \Rightarrow multiply probabilities to get joint pdf.

Extending the notion to three events

- Conditions for 3 events to be independent:

1. They should be pairwise independent. i.e.,

- A and B are independent
- B and C are independent
- C and A are independent

2. Knowledge of the joint occurrence of any two events is independent of the third event:

$$
\begin{aligned}
& P(A \cap B \mid C)=P(A \cap B) \\
& P(B \cap C \mid A)=P(B \cap C) \\
& P(C \cap A \mid B)=P(C \cap A) .
\end{aligned}
$$

Or equivalently, we write $P(A \cap B \cap C)=P(A) P(B) P(C)$ in this case.

An Example

Figure 1: Simple Events

- Consider 3 events A, B and C in the Venn Diagram (Fig. 1).
- Q: Are these 3 events independent?

Example (Cont'd)

Figure 2: Joint Events

- A: They are pair-wise independent. Since

$$
\begin{aligned}
& P(A \mid B)=P(A)=\frac{1}{2} \\
& P(B \mid C)=P(B)=\frac{1}{2} \\
& P(C \mid A)=P(C)=\frac{1}{2}
\end{aligned}
$$

- However the 2nd condition does not hold:

$$
P(A \cap B \mid C)<P(A \cap B)=\frac{1}{4}
$$

Generalizing the notion to n events

- Multiplication rule. A set of n events $A_{1}, A_{2}, \ldots A_{n}$ are independent, if the probability of any subset of joint events is equal to the product of their marginal probabilities.

$$
P\left(\cap A_{i}\right)=\prod P\left(A_{i}\right)
$$

- Equivalently,

$$
P\left(\cap_{i_{1}}^{i_{m}} A_{i} \mid \cap_{i_{m+1}}^{i_{n}} A_{i}\right)=\prod P\left(\cap_{i_{1}}^{i_{m}} A_{i}\right)=\prod P\left(A_{i}\right)
$$

- At the heart of the independence, everything is independent of everything else.
- In practice, we assume that the outcomes of separate experiments are all independent.

Random Variables

- A real-valued random variable (rv) is function $X: \Omega \rightarrow \mathbb{R}$ that assigns a value to each outcome $\omega \in \Omega$.
- In the coin toss, suppose we receive $\$ 1$ if head appears and pay $\$ 1$ otherwise. In this case, we set the rv X to be the amount after first toss:

$$
X= \begin{cases}1, & \text { if } \mathrm{H} \\ -1, & \text { if } \mathrm{T}\end{cases}
$$

Joint CDFs

Figure 3: Multivariate RVs

- The joint (cumulative) distribution function of two RVs X and Y is the function $F: \mathbb{R} \rightarrow[0,1]$ such that

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =P(\omega \in \Omega \mid\{X(\omega) \leq x\} \cap\{Y(\omega) \leq y\})
\end{aligned}
$$

Independence of Multivariate RVs

- Definition: The two random variables X and Y are independent \Leftrightarrow For any number x and y, the event $A=\{X \leq x\}$ is independent of event $B=\{Y \leq y\}$.
- Recall the joint distribution function of X and Y :

$$
F_{X, Y}(x, y)=P[\underbrace{\{X(\omega) \leq x\}}_{A} \cap \underbrace{\{Y(\omega) \leq y\}}_{B}]
$$

- But events A and B are independent \Rightarrow

$$
\begin{aligned}
P[A \cap B] & =P(A) P(B) \\
\text { hence } F_{X, Y}(x, y) & =F_{X}(x) F_{Y}(y) \forall x, y \in \mathbb{R}
\end{aligned}
$$

- Differentiating the distribution functions, we get the joint pdf

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Toy Example Revisited

Figure 4: Tossing Coin Twice

- Experiment. Toss a coin twice
- let X and Y be the RVs denoting the outcome of first and second trials, respectively.
- Question: Are X and Y independent RVs ?

Toy Example (Cont'd)

- Solution:

$$
\begin{aligned}
P_{X}(x) & =\frac{1}{2} \quad x \in\{-1,1\} \\
P_{Y}(y) & =\frac{1}{2} \quad y \in\{-1,1\} \\
P_{X, Y}(x, y) & =\frac{1}{4} \\
& =P_{X}(x) P_{Y}(y) \quad \forall\{(x, y)\} .
\end{aligned}
$$

Concluding Remarks

- If RVs X and Y are independent, then
$-E(X Y)=E(X) E(Y)$
$-\operatorname{var}(X, Y)=0 \Rightarrow \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$
$-f_{Y \mid X}(y \mid x)=f_{Y}(y)$.
- From the 2 nd statement, independent \Rightarrow uncorrelated, but not always conversely!
- Generalization. A set of n RVs are independent, if for any finite set of numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$, the events $\left\{X_{1} \leq x_{1}, X_{1} \leq x_{1} \ldots X_{1} \leq x_{1}\right\}$ are independent.
- Equivalently, the joint pdf

$$
f_{X_{1}, \ldots X_{n}}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

References

- A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, Hew York, NY, 1991.
- A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison-Wesley, 1989.
- R. Yates and D. Goodman Probability and stochastic processes, Wiley, 2004.

Thank you!

Q3. Calculate the transfer function of the following op-amp circuit and discuss applications

Real Vs. Ideal Op-amp

Parameter	Ideal	Real
$R_{\text {in }}$	∞	$10^{6}-10^{12} \Omega$
$R_{\text {Out }}$	0	$100-1000 \Omega$
$A_{d}(\mathrm{OL})$	∞	$10^{5}-10^{9}$
$A_{c}(\mathrm{OL})$	0	10^{-5}
Slew rate	∞	$0.5 \mathrm{~V} /$ microsecond
Gain-BW product	∞	$1-20 \mathrm{MHz}$

Golden Rules

- Voltage Rule: $v^{+}=v^{-}$
- Rationale: $v_{o}=A_{d} v_{i}$ is limited; but $A_{d} \uparrow \infty \Rightarrow v_{i} \downarrow 0$.
- Current Rule: $i_{\text {in }}=0$
- Rationale: $R_{i}=\infty$.

Why Negative Feedback?

Figure 1: Typical negative feedback

- An op-amp with negative feedback provides the following benefits:
- Allows to control the voltage gain. For the above circuit, the gain is $\frac{1}{B}$ when $A \approx \infty$.
- No need to know about the internal characteristics.
- Extends the useful frequency range.
- Improves stability (against temperature variations)

The Differential Op-amp: Analysis

Figure 2: Example

- Compute voltage at the non-inverting terminal

$$
\begin{equation*}
v_{1}=\frac{R_{4}}{R_{3}+R_{4}} v_{B} \tag{1}
\end{equation*}
$$

- From the voltage rule: $v_{2}=v_{1}$.
- Recall the current rule; apply the KCL at node 2 to get

$$
\begin{equation*}
\frac{v_{A}-v_{2}}{R_{1}}=\frac{v_{2}-v_{o}}{R_{2}} \tag{2}
\end{equation*}
$$

- Substituting (1) into (2) yields

$$
v_{o}=\frac{\left(R_{1}+R_{2}\right) R_{4}}{\left(R_{3}+R_{4}\right) R_{1}} v_{B}-\frac{R_{2}}{R_{1}} v_{A}
$$

Key Features

- Set all resistors to be equal \Rightarrow difference op-amp:

$$
v_{o}=\left(v_{B}-v_{A}\right)
$$

- Set $R_{1}=R_{3}$ and $R_{2}=R_{4} \Rightarrow$ amplified difference:

$$
v_{o}=\frac{R_{2}}{R_{1}}\left(v_{B}-v_{A}\right)
$$

Differential signaling

Figure 3: A differential receiver setup

- Input signals can be either analog or digital.
- - Desired input: differential-mode signal
- Noise: common-mode signal

Differential signaling (cont'd)

- Two basic operations:
- Amplifying desired small-signal
- Filtering out noise
- Benefits:
- Tolerance of ground offsets
- Suitability for use with low-voltage (<5 volts) electronics
- Resistance to noise interference(e.g., AC power line, circuit noise).
- Applications:
- Data transmission (e.g., USB)
- ECG
- Thermocouple
- as a stable comparator module

Comparator

Figure 4: Differential Op-Amp as a Comparator

References

- T. Floyd, Electronic Devices, 6th ed., 2002.
- G. Rizzoni, Principles and applications of electrical engineering, McGraw Hill, 2004.

Thank you!

Q4. Discuss the linear convolution of the 2-finite length sequences using the DFT

DTFT: A Quick Recap

- Extends the FT for non-periodic discrete-time signals
- Forward DTFT:

$$
X[\Omega]=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

- Periodic spectrum of period 2π.
- Abandon to use the DTFT in a digital signal processer for the following reasons:
- DTFT Spectrum $X[\Omega]$ is continuous
- Real signals have finite length

Discrete Fourier Transform

- Extends the DTFT for non-periodic discrete-time signals (finite duration) with discrete frequencies.
- Samples the DTFT spectrum on the interval $[0,2 \pi]$ using N points.
- N-point DFT-pairs:
- Forward

$$
X[k]=\sum_{n=0}^{N-1} x[n] W^{k n}, \quad k=0, \ldots(N-1)
$$

where

$$
W=\exp \left(-j \frac{2 \pi}{N}\right)
$$

- Inverse

$$
x[n]=\sum_{k=0}^{N-1} X[k] W^{-k n}, \quad n=0, \ldots(N-1) .
$$

DFT-pairs in Block-Matrix Form

- Let

$$
\begin{aligned}
\mathbf{x} & =[x(0), x(1), \ldots x(N-1)]^{T} \\
\mathbf{X} & =[X(0), X(1), \ldots X(N-1)]^{T} \\
\mathbf{W} & =\left(\begin{array}{cccc}
W^{0} & W^{0} & \ldots & W^{0} \\
W^{0} & W^{1} & \ldots & W^{N-1} \\
\ldots & \ldots & \ldots & \ldots \\
W^{0} & W^{N-1} & \ldots & W^{(N-1)^{2}}
\end{array}\right)
\end{aligned}
$$

- DFT-pairs in a matrix form:

$$
\begin{align*}
\mathbf{X} & =\mathbf{W} \mathbf{x} \tag{1}\\
\mathbf{x} & =\frac{1}{N} \mathbf{W}^{\mathbf{H}} \mathbf{x} \tag{2}
\end{align*}
$$

- Requires N^{2} complex multiplications and $N(N-1)$ complex additions.

DFT-pairs (Cont'd)

- Taking complex-conjugate of (2) twice replaces the IDFT with DFT:

$$
\mathbf{x}=\frac{1}{N}\left(\operatorname{DFT}\left(\mathbf{X}^{*}\right)\right)^{*}
$$

- Can be implemented using lightening-speed algorithms!

Linear Convolution

- Definition: Suppose two sequences $h[n]$ and $x[n]$ of length L and P, respectively.

$$
\begin{equation*}
y[n]=(h * x)[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k] \tag{3}
\end{equation*}
$$

- Basic operations:
- Time invert one of the sequences
- Slide it from $-\infty$ to ∞
- When sequences intersect, sum their products
- $y[n]$ is a sequence of length $(L+P-1)$
- Analogous to computing coefficients of the product of two polynomials.

Example: Linear Convolution

Circular Shift

- Define the circular shift of sequence $x[n]$ of length N as

$$
x_{1}[n]=(\tilde{x}[m-n]) \Pi_{N}(n)
$$

where

- $\tilde{x}[n]$ is the periodic extension of $x[n]$
$-\Pi_{N}(n)$ the rectangular window in the interval $[0,(N-1)]$.
- 3 basic operations:
- Periodic extension
- Normal shift
- Extraction of the sequence over one period $[0,(N-1)]$

Example (i): Circular Shift

Example (ii): Circular Shift

Figure 1: Right Circular Shift on $x[n]=[0,1,2,2]$ by 2 points

Circular Convolution

- Definition: Suppose two sequences $h[n]$ and $x[n]$ of length N each.

$$
y[n]=h[n] \otimes x[n]=\left(\sum_{m=0}^{N-1} \tilde{h}[m] \tilde{x}[n-m]\right) \Pi_{N}(n)
$$

- $y[n]$ is a sequence of length N.
- Key Property:

$$
h[n] \otimes x[n] \quad \stackrel{\text { DFT }}{\Rightarrow} \quad H[k] X[k]
$$

- 3 major differences from the linear convolution:
- Periodic extension
- Convolution is confined to one period
- Truncation of one period at the end

Example: Circular Convolution

Periodic the sequences:

Periodic convolution

Get out a period

- Can we perform linear convolution using the DFT? If yes, how?
- Extend the length of each sequence such that

$$
N \geq M=(L+P-1)
$$

then

$$
h[n] \otimes x[n]=h[n] * x[n] .
$$

Zero Padding (Cont'd)

- Remarks on zero-padding:
- improves the picture of the DTFT
- does not increase spectral resolution or reduce the leakage.

Steps: Linear Convolution via DFT

Figure 2: Flow Diagram

- Choose N to be at least $(L+P-1)$.
- Pad the two original sequences with zeros to length N.
- Compute the N-point DFT to obtain $H[k]$ and $X[k]$.
- Compute the point-wise product:

$$
Y[k]=H[k] X[k] \quad k=0, \ldots(N-1) .
$$

Linear Convolution (Cont'd)

- Compute $y[n]$ by taking the N-point IDFT of $Y[k]$ as follows:
- compute the DFT of $Y^{*}[k]$
- take the complex conjugate
- divide by $\frac{1}{N}$
- Save the first $(L+P-1)$ values of $y[n]$.

Final Remarks

- To speed up the process, do the followings:

1. Use FFT in place of DFT with N being some power of 2 .
2. Suppose $h[n]$ is fixed. So pre-compute and save its DFT in advance.

- Linear convolution via DFT is faster than the 'normal' linear convolution when

$$
\underbrace{O(N \log (N)}_{\text {FFT }}<\underbrace{O(L P)}_{\text {normal }}
$$

References

- J. K. Zhang, CoE 4TL4: Digital Signal Processing, Course notes.
- S. Hayes, Digital Signal Processing, Schaum's Outline, 1999.
- A. Oppenheim \& R. Schafer Discrete-time signal processing, 2nd ed.

Thank you!

