
Q1. Discuss, compare and contrast various
curve fitting and interpolation methods
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Curve Fitting

• Problem statement: Given a set of (n + 1) point-pairs

{xi, yi}, i = 0, 1, . . . n, find an analytic, smooth curve in the

interval [x0, xn].

• Why we perform curve fitting?

– To get estimates at some intermediate points

– To produce a simplified version of a more complicated function

• Methods:

– Interpolation for clean data:

∗ Lagrange

∗ Newton’s divided-difference

∗ Splines

– Regression for noisy data:

∗ Linear, Polynomial ...
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Interpolation: Direct Approach

• To fit exactly (n + 1) data points, use the polynomial of degree n:

Pn = c0 + c1x . . . + cnxn

• Find ci by solving the linear system of equations:
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• Caution: Not advisable to solve this system owing to the

matrix-inversion!

• Do we have any inversion-free methods ?
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Lagrange Interpolation

• An n-th degree Lagrange basis polynomial:

φi(x) =

∏n
j=0,j 6=i(x − xj)

∏n
j=0,j 6=i(xi − xj)

i = 0, 1, . . . n.

• Hence the Lagrange’s interpolating polynomial is

Pn(x) =

n
∑

i=0

ciφi(x)

• φi(x) has the property:

φi(xk) =







1, i = k;

0, i 6= k.
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Lagrange (Cont’d)

• Using the above property, we get the coefficients

ci = yi

hence much simpler to find coefficients!

• Limitations:

– Redo the whole procedure when adding/deleting a point ⇒

works bad with unknown order.

– Divisions present in computing the Lagrange polynomial are

expensive
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Newton’s Divided Difference Polynomial

• An i-th order Newton basis polynomial:

φi(x) =

i−1
∏

j=0

(x − xj)

• The interpolating polynomial in terms of Newton’s basis:

Pn(x) =

n
∑

i=0

ciφi(x)

• Get the Coefficients:

ci = [y0, . . . yi]

where [y0, . . . yi] is the notation for an (i + 1)-th order divided

difference.
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Newton (Cont’d)

• Virtues:

– For equally spaced data points, replace the divided differences

with functional differences.

– Less arithmetic operations in writing the polynomial than that

of Lagrangian.

– Easy to add/delete a point ⇒ works well for an unknown order

• All the above methods yield the same results for a given set of

points. However, for larger n,they all suffer from the Runge’s

phenomenon.
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Runge’s Phenomenon

• Is the error is always guaranteed to diminish with increasing

polynomial order? No!

• Runge observed an increasing oscillatory behavior when using

polynomial interpolation with polynomials of high degree.

• Why?

– The error between the generating function and the interpolating

polynomial of order n is bounded by the n-th derivative of the

generating function. For Runge-type functions (e.g.,

f(x) = 1

1+25x2 ), the magnitude of the derivative increases.
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Figure 1: Runge Phenomenon in a nutshell (Runge function-red, 5th-

order polynomial-blue, 9th-order polynomial-green)



McMaster University 9

Splines

• Local approach dividing into sub-intervals and fit to a low-order

polynomial while preserving the following properties:

– Continuity at the boundary

– Slope continuity at the boundary

– Curvature continuity at the boundary ...

• Spline candidates:

– Linear

– Quadratic

– Cubic

• Useful for functions with local abrupt changes
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Linear Splines
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Quadratic Splines
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Cubic Splines

• Cubic spline of the form:

fi(x) = aix
3 + bix

2 + cix + di xi−1 ≤ x ≤ xi

• Find 4n unknowns from the following conditions:

1. Continuity: 2(n − 1) conditions

2. End: 2 conditions

3. Slope continuity: (n − 1) conditions

4. Curvature continuity: (n − 1) conditions

5. Curvature at end points: 2 conditions
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Linear Regression

• Assumptions:

– We look for a general trend of the data set

– Noisy data are available in large scale

• Fitted model:

f(x) = a0 + a1x.

• Objective function: Sum of error-squared:

J(a0, a1) =

n
∑

i=0

(yi − a0 − a1xi)
2



McMaster University 14

Linear Regression (Cont’d)

• To find the unknown coefficients, set the partial derivatives to be

zero:

∂J

∂a0

= −2
∑

i

(yi − a0 − a1xi) = 0

∂J

∂a1

= −2
∑

i

[yi − a0 − a1xi]xi = 0

• Rearrange the above to get




n + 1
∑

xi

∑

xi

∑

x2
i









a0

a1



 =





∑

yi

∑

xiyi





• For the above case, the coefficient matrix

A = BBT ⇒ BBT [a] = By. Solve the above system using the SVD

or Cholesky.
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Thank you!



Q2. Discuss notion of statistical independence
for pair of events, and corresponding situation

for multivariate distribution
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Events and Probabilities

• The sample space, Ω of an experiment consists of all possible

mutually exclusive outcomes .

• An event is a set of outcomes.

• The probability of an event A:

P (A) = lim
N→∞

No. outcomes of A, NA

No. trials, N

• Ex. Tossing a fair coin.

Ω = {H,T}

A = {H}

Hence, P (A) =
1

2
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Independent Events

• Definition: Two events A and B are independent if

P (A ∩ B) = P (A)P (B).

• Interpretation:

– On the LHS, A ∩ B ⇒ the event that joint/both events A and

B occur.

– On the RHS, we have the product of the probabilities of the

individual events/marginals.

– Intuitively it means that the occurrence of one event does not

alter the occurrence probability of the other!
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More Insight from the Conditional Probability

• Definition: The conditional probability P (B|A) is the the

probability of event B given that A has occurred:

P (B|A) =
P (A ∩ B)

P (A)

provided P (A) 6= 0.

• If A and B are independent ⇒

P (B|A) =
P (B ∩ A)

P (A)
=

P (A)P (B)

P (A)
= P (B).

• Interpretation: The event A does not improve our knowledge about

the occurrence of B. It makes no difference to B if A has occurred

or not.
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Toy Example

• Experiment: Toss a coin twice.

• Let A and B be the events of getting head in the first and the

second trial, respectively.

• Are the two events independent? Our intuition says Yes !

• Verify from the definition:

P (A) = P (HH) + P (HT ) =
1

4
+

1

4
=

1

2

P (B) = P (HH) + P (TH) =
1

4
+

1

4
=

1

2

But, P (A ∩ B) = P (HH) =
1

4
= P (A)P (B)

• Hence they are independent as expected!
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Mutual Exclusiveness and Independence

• Not synonyms!

• If the events A and B are mutually exclusive ⇒

– From the set theory: A ∩ B = φ.

– From the probabilistic point of view:

P (A ∩ B) = 0

or P (B|A) =
P (B ∩ A)

P (A)
= 0

• Occurrence of A ⇒ B has definitely not occurred ⇒ A nice piece of

information!

• Two mutually exclusive events are dependent except they are

zero-probabilistic.
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Mutual Exclusiveness (Cont’d)

• How we benefit from these two notions?

– Mutually exclusive ⇒ add probabilities to get joint probability

– Independent ⇒ multiply probabilities to get joint pdf.
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Extending the notion to three events

• Conditions for 3 events to be independent:

1. They should be pairwise independent. i.e.,

– A and B are independent

– B and C are independent

– C and A are independent

2. Knowledge of the joint occurrence of any two events is

independent of the third event:

P (A ∩ B|C) = P (A ∩ B)

P (B ∩ C|A) = P (B ∩ C)

P (C ∩ A|B) = P (C ∩ A).

Or equivalently, we write P (A ∩ B ∩ C) = P (A)P (B)P (C) in

this case.
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An Example

A
CB

Figure 1: Simple Events

• Consider 3 events A,B and C in the Venn Diagram (Fig. 1).

• Q: Are these 3 events independent?
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Example (Cont’d)

A B B C AC
A

CBA C

Figure 2: Joint Events

• A: They are pair-wise independent. Since

P (A|B) = P (A) =
1

2

P (B|C) = P (B) =
1

2

P (C|A) = P (C) =
1

2

• However the 2nd condition does not hold:

P (A ∩ B|C) < P (A ∩ B) =
1

4
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Generalizing the notion to n events

• Multiplication rule. A set of n events A1, A2, . . . An are

independent, if the probability of any subset of joint events is equal

to the product of their marginal probabilities.

P (∩Ai) =
∏

P (Ai)

• Equivalently,

P (∩im
i1

Ai| ∩
in
im+1

Ai) =
∏

P (∩im
i1

Ai) =
∏

P (Ai)

• At the heart of the independence, everything is independent of

everything else.

• In practice, we assume that the outcomes of separate experiments

are all independent.
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Random Variables
 

R 
 T  x 

A ?  

O  

X(?)  

• A real-valued random variable (rv) is function X : Ω → R that

assigns a value to each outcome ω ∈ Ω.

• In the coin toss, suppose we receive $1 if head appears and pay $1

otherwise. In this case, we set the rv X to be the amount after first

toss:

X =







1, if H;

−1, if T.
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Joint CDFs

1
ω

2
ω

.

.

.

X

Ω
Y

Figure 3: Multivariate RVs

• The joint (cumulative) distribution function of two RVs X and Y is

the function F : R → [0, 1] such that

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

= P (ω ∈ Ω|{X(ω) ≤ x} ∩ {Y (ω) ≤ y})
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Independence of Multivariate RVs

• Definition: The two random variables X and Y are independent ⇔

For any number x and y, the event A = {X ≤ x} is independent of

event B = {Y ≤ y}.

• Recall the joint distribution function of X and Y:

FX,Y (x, y) = P [{X(ω) ≤ x}
︸ ︷︷ ︸

A

∩{Y (ω) ≤ y}
︸ ︷︷ ︸

B

]

• But events A and B are independent ⇒

P [A ∩ B] = P (A)P (B)

hence FX,Y (x, y) = FX(x)FY (y) ∀x, y ∈ R

• Differentiating the distribution functions, we get the joint pdf

fX,Y (x, y) = fX(x)fY (y).
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Toy Example Revisited

HH

TT

HT    TH 

-1       +1 -1       +1 

Figure 4: Tossing Coin Twice

• Experiment. Toss a coin twice

• let X and Y be the RVs denoting the outcome of first and second

trials, respectively.

• Question: Are X and Y independent RVs ?
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Toy Example (Cont’d)

• Solution:

PX(x) =
1

2
x ∈ {−1, 1}

PY (y) =
1

2
y ∈ {−1, 1}

PX,Y (x, y) =
1

4
= PX(x)PY (y) ∀{(x, y)}.
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Concluding Remarks

• If RVs X and Y are independent, then

– E(XY ) = E(X)E(Y )

– var(X,Y ) = 0 ⇒ var(X + Y ) = var(X) + var(Y )

– fY |X(y|x) = fY (y).

• From the 2nd statement, independent ⇒ uncorrelated, but not

always conversely!

• Generalization. A set of n RVs are independent, if for any finite set

of numbers {x1, x2 . . . xn}, the events

{X1 ≤ x1,X1 ≤ x1 . . . X1 ≤ x1} are independent.

• Equivalently, the joint pdf

fX1,...Xn
(x1 . . . xn) =

n∏

i=1

fXi
(xi).
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Q3. Calculate the transfer function of the
following op-amp circuit and discuss

applications
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Real Vs. Ideal Op-amp

 

Vi 
AVi 

Vo 

Ro 

Ri 

Parameter Ideal Real

Rin ∞ 106 − 1012Ω

Rout 0 100 − 1000Ω

Ad(OL) ∞ 105 − 109

Ac(OL) 0 10−5

Slew rate ∞ 0.5V/microsecond

Gain-BW product ∞ 1 − 20MHz



McMaster University 2

Golden Rules

Output

-V

+

-
Inputs

+V

V+

V-

• Voltage Rule: v+ = v−

• Rationale: vo = Advi is limited; but Ad ↑ ∞ ⇒ vi ↓ 0.

• Current Rule: iin = 0

• Rationale: Ri = ∞.
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Why Negative Feedback?

 

Vi  Vo 

-B 

A 

Figure 1: Typical negative feedback

• An op-amp with negative feedback provides the following benefits:

– Allows to control the voltage gain. For the above circuit, the

gain is 1

B
when A ≈ ∞.

– No need to know about the internal characteristics.

– Extends the useful frequency range.

– Improves stability (against temperature variations)
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The Differential Op-amp: Analysis

VA

VB

VO

R1

R3

R4

R2

-

+

2

1

i

Inverting
Opamp

Non -inverting
Opamp

Figure 2: Example

• Compute voltage at the non-inverting terminal

v1 =
R4

R3 + R4

vB (1)

• From the voltage rule: v2 = v1.
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• Recall the current rule; apply the KCL at node 2 to get

vA − v2

R1

=
v2 − vo

R2

(2)

• Substituting (1) into (2) yields

vo =
(R1 + R2)R4

(R3 + R4)R1

vB −
R2

R1

vA
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Key Features

• Set all resistors to be equal ⇒ difference op-amp:

vo = (vB − vA)

• Set R1 = R3 and R2 = R4 ⇒ amplified difference:

vo =
R2

R1

(vB − vA)
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Differential signaling

Figure 3: A differential receiver setup

• Input signals can be either analog or digital.

• – Desired input: differential-mode signal

– Noise: common-mode signal
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Differential signaling (cont’d)

• Two basic operations:

– Amplifying desired small-signal

– Filtering out noise

• Benefits:

– Tolerance of ground offsets

– Suitability for use with low-voltage (<5 volts) electronics

– Resistance to noise interference(e.g., AC power line, circuit

noise).

• Applications:

– Data transmission (e.g., USB)

– ECG

– Thermocouple

– as a stable comparator module
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Comparator

 
VA 

VB 

VO VA <=> VB 
? 

Figure 4: Differential Op-Amp as a Comparator
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Thank you!



Q4. Discuss the linear convolution of the
2-finite length sequences using the DFT
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DTFT: A Quick Recap

• Extends the FT for non-periodic discrete-time signals

• Forward DTFT:

X[Ω] =
∞∑

n=−∞

x[n]e−jΩn

• Periodic spectrum of period 2π.

• Abandon to use the DTFT in a digital signal processer for the

following reasons:

– DTFT Spectrum X[Ω] is continuous

– Real signals have finite length
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Discrete Fourier Transform

• Extends the DTFT for non-periodic discrete-time signals (finite

duration) with discrete frequencies.

• Samples the DTFT spectrum on the interval [0, 2π] using N points.

• N -point DFT-pairs:

– Forward

X[k] =

N−1∑

n=0

x[n]W kn, k = 0, . . . (N − 1)

where

W = exp(−j
2π

N
).

– Inverse

x[n] =

N−1∑

k=0

X[k]W−kn, n = 0, . . . (N − 1).
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DFT-pairs in Block-Matrix Form

• Let

x = [x(0), x(1), . . . x(N − 1)]T

X = [X(0), X(1), . . . X(N − 1)]T

W =










W 0 W 0 . . . W 0

W 0 W 1 . . . WN−1

. . . . . . . . . . . .

W 0 WN−1 . . . W (N−1)2










• DFT-pairs in a matrix form:

X = Wx (1)

x =
1

N
W

H
x (2)

• Requires N2 complex multiplications and N(N − 1) complex

additions.
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DFT-pairs (Cont’d)

• Taking complex-conjugate of (2) twice replaces the IDFT with

DFT:

x =
1

N

(
DFT(X∗)

)
∗

.

• Can be implemented using lightening-speed algorithms!
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Linear Convolution

• Definition: Suppose two sequences h[n] and x[n] of length L and P ,

respectively.

y[n] =
(
h ∗ x

)
[n] =

∞∑

k=−∞

h[k]x[n − k] (3)

• Basic operations:

– Time invert one of the sequences

– Slide it from −∞ to ∞

– When sequences intersect, sum their products

• y[n] is a sequence of length (L + P − 1)

• Analogous to computing coefficients of the product of two

polynomials.
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Example: Linear Convolution
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Circular Shift

• Define the circular shift of sequence x[n] of length N as

x1[n] =
(
x̃[m − n]

)
ΠN (n)

where

– x̃[n] is the periodic extension of x[n]

– ΠN (n) the rectangular window in the interval [0, (N − 1)].

• 3 basic operations:

– Periodic extension

– Normal shift

– Extraction of the sequence over one period [0, (N − 1)]
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Example (i): Circular Shift
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Example (ii): Circular Shift

-2 -1 1      2      3 4      5

2

1

x(n)

n

-2 -1 1      2      3 4      5

2

1

x((n-2) mod 4) 

n

Figure 1: Right Circular Shift on x[n] = [0, 1, 2, 2] by 2 points
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Circular Convolution

• Definition: Suppose two sequences h[n] and x[n] of length N each.

y[n] = h[n] ⊗ x[n] =
(

N−1∑

m=0

h̃[m]x̃[n − m]
)
ΠN (n).

• y[n] is a sequence of length N .

• Key Property:

h[n] ⊗ x[n]
DFT
⇒ H[k]X[k]

• 3 major differences from the linear convolution:

– Periodic extension

– Convolution is confined to one period

– Truncation of one period at the end
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Example: Circular Convolution
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Zero Padding

n

Envelope of X[n]

M-10

NM-10 N+M-1-N+M-1-N

n

Envelope of

• Can we perform linear convolution using the DFT? If yes, how?

• Extend the length of each sequence such that

N ≥ M = (L + P − 1),

then

h[n] ⊗ x[n] = h[n] ∗ x[n].
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Zero Padding (Cont’d)

0 1 2 3 4 5

N=5

N=10

0
k

k

k

• Remarks on zero-padding:

– improves the picture of the DTFT

– does not increase spectral resolution or reduce the leakage.
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Steps: Linear Convolution via DFT

N-point
IDFT

Extend to N-
point N-point DFT

Extend to N-
point N-point DFT

Figure 2: Flow Diagram

• Choose N to be at least (L + P − 1).

• Pad the two original sequences with zeros to length N .

• Compute the N -point DFT to obtain H[k] and X[k].

• Compute the point-wise product:

Y [k] = H[k]X[k] k = 0, . . . (N − 1).
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Linear Convolution (Cont’d)

• Compute y[n] by taking the N -point IDFT of Y [k] as follows:

– compute the DFT of Y ∗[k]

– take the complex conjugate

– divide by 1
N

• Save the first (L + P − 1) values of y[n].
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Final Remarks

• To speed up the process, do the followings:

1. Use FFT in place of DFT with N being some power of 2.

2. Suppose h[n] is fixed. So pre-compute and save its DFT in

advance.

• Linear convolution via DFT is faster than the ‘normal’ linear

convolution when

O(N log(N)
︸ ︷︷ ︸

FFT

< O(LP )
︸ ︷︷ ︸

normal
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Thank you!


