Q1. Discuss the evaluation of covariance matrices in relation to Kalman and extended Kalman filtering

Problem Setup

- The KF assumes the following dynamic state-space model:

$$
\begin{aligned}
\text { Process equation: } x_{k} & =F_{k} x_{k-1}+v_{k-1} \\
\text { Measurement equation: } z_{k} & =H_{k} x_{k}+w_{k}
\end{aligned}
$$

- Assumptions:
- Additive uncorrelated Gaussian noise sequences with known statistics. i.e., $v_{k} \sim \mathcal{N}\left(0, Q_{k-1}\right)$ and $w_{k} \sim \mathcal{N}\left(0, R_{k}\right)$
- Known initial estimate. i.e., $x_{0} \sim \mathcal{N}\left(\hat{x}_{0 \mid 0}, P_{0 \mid 0}\right)$
- Objective: Estimate the state at time k recursively given $\left\{z_{1}, z_{2}, \ldots z_{k}\right\}$.
- Performance criteria: Minimum mean-square error.

Two Basic Operations

- Predict:

$$
\begin{aligned}
\hat{x}_{k \mid k-1} & =F_{k} \hat{x}_{k-1 \mid k-1} \\
P_{k \mid k-1} & =F_{k} P_{k-1 \mid k-1} F_{k}^{T}+Q_{k-1}
\end{aligned}
$$

- Correct:

$$
\begin{aligned}
\hat{z}_{k \mid k-1} & =H_{k} \hat{x}_{k \mid k-1} \\
S_{k \mid k-1} & =H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k} \\
W_{k} & =P_{k \mid k-1} H_{k}^{T} S_{k \mid k-1}^{-1} \\
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+W_{k}\left(z_{k}-\hat{z}_{k \mid k-1}\right) \\
P_{k \mid k} & =P_{k \mid k-1}-W_{k} H_{k} P_{k \mid k-1}
\end{aligned}
$$

Error Covariances: Analysis

- As a self-assessment of its own errors, the KF yields the error covariance matrices:
- state \Rightarrow predicted and posterior error covariances
- measurement \Rightarrow innovation covariance
- Why we evaluate covariances?
- To verify the credibility of the filter: if the actual error is consistent with the filter-computed error?
- To compare various filter performances
- To probe into modeling errors

Error Covariances (Cont'd)

- Tools for evaluation:
- Mean-Squared Error (MSE)
- Posterior Cramer-Rao Lower Bound (PCRLB)
- Normalized Innovation-Squared (NIS)
- Normalized Estimation Error-squared(NEES)
- The PCRLB and the NIS can be used in real-time applications.

Mean-Squared Error

- Given the true state x_{k}, the MSE (matrix) of the filter estimate is defined by

$$
\operatorname{MSE}(k)=\mathbb{E}\left(\left(x_{k}-\hat{x}_{k \mid k}\right)\left(x_{k}-\hat{x}_{k \mid k}\right)^{T}\right)
$$

- The gain-posterior covariance relationship: $W_{k}=P_{k \mid k} H^{T} R^{-1}$.
- 3 practical cases:
$-P_{k \mid k}=\operatorname{MSE}(k) \Rightarrow$ optimal
$-P_{k \mid k}>\operatorname{MSE}(k) \Rightarrow$ pessimistic
$-P_{k \mid k}<\operatorname{MSE}(k) \Rightarrow$ optimistic
- $\mathrm{MSE}=$ variance + bias-squared (in a scalar case).

PCRLB

- The covariance matrix $P_{k \mid k}$ of an unbiased state estimator $\widehat{\mathbf{x}}_{k \mid k}$ has a lower bound

$$
P_{k \mid k} \succeq J_{k}^{-1}
$$

where the Fisher information matrix

$$
J_{k}=D_{k-1}^{22}-D_{k-1}^{21}\left(J_{k-1}+D_{k-1}^{11}\right)^{-1} D_{k-1}^{12} \quad(k>0)
$$

where

$$
\begin{aligned}
D_{k-1}^{11} & =-E\left\{\nabla_{\mathbf{x}_{k-1}}\left[\nabla_{\mathbf{x}_{k-1}} \ln p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)\right]^{T}\right\} \\
D_{k-1}^{21} & =-E\left\{\nabla_{\mathbf{x}_{k-1}}\left[\nabla_{\mathbf{x}_{k}} \ln p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)\right]^{T}\right\} \\
D_{k-1}^{12} & =-E\left\{\nabla_{\mathbf{x}_{k}}\left[\nabla_{\mathbf{x}_{k-1}} \ln p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)\right]^{T}\right\}=\left[D_{k-1}^{21}\right]^{T} \\
D_{k-1}^{22} & =-E\left\{\nabla_{\mathbf{x}_{k}}\left[\nabla_{\mathbf{x}_{k}} \ln p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)\right]^{T}\right\}-E\left\{\nabla_{\mathbf{x}_{k}}\left[\nabla_{\mathbf{x}_{k}} \ln p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right)\right]^{T}\right\}
\end{aligned}
$$

PCRLB for the KF

- For the LG case, information matrices

$$
\begin{aligned}
D_{k-1}^{11} & =F_{k-1}^{T} Q_{k-1}^{-1} F_{k-1} \\
D_{k-1}^{12} & =\left[D_{k-1}^{21}\right]^{T}=-F_{k-1}^{T} Q_{k-1}^{-1} \\
D_{k-1}^{22} & =Q_{k-1}^{-1}+H_{k}^{T} R_{k}^{-1} H_{k}
\end{aligned}
$$

- Hence we get the Fisher information matrix at time k as

$$
\begin{aligned}
J_{k} & =Q_{k-1}^{-1}-Q_{k-1}^{-1} F_{k-1}\left(J_{k-1}+F_{k-1}^{T} Q_{k-1}^{-1} F_{k-1}\right)^{-1} F_{k-1}^{T} Q_{k-1}^{-1}+J_{k}^{z} \\
& =\left(Q_{k-1}+F_{k-1} J_{k-1}^{-1} F_{k-1}^{T}\right)^{-1}+H_{k}^{T} R_{k}^{-1} H_{k}
\end{aligned}
$$

- Obtain the same when replacing J_{k} with $P_{k \mid k}^{-1} \Rightarrow \mathrm{KF}$ is an efficient estimator for a linear-Gaussian system.

Credibility Check on Innovation Covariance

- Properties of innovation sequences
- zero-mean Gaussian
- uncorrelated.
- Define normalized innovation-squared (NIS):

$$
\epsilon(k)=\nu_{k}^{T} S_{k \mid k}^{-1} \nu_{k}
$$

where the innovation and its covariance

$$
\begin{aligned}
\nu_{k} & =\left(z_{k}-\hat{z}_{k \mid k-1}\right) \\
S_{k \mid k-1} & =\operatorname{cov}\left(\nu_{k}\right)
\end{aligned}
$$

- Distribution of $\epsilon(k)$:

$$
\epsilon(k) \sim \chi_{m}^{2}
$$

where m is the measurement-vector dimension or the dof.

Credibility Check (Cont'd)

- Postulate the null hypothesis

$$
H_{0}: \mathbb{E}[\epsilon(k)]=m
$$

- Accept both the innovation and its covariance commensurate with theoretical results if

$$
\epsilon(k) \in\left[\begin{array}{ll}
r_{1}, & r_{2}
\end{array}\right]
$$

- The acceptance interval $\left[\begin{array}{ll}r_{1} & r_{2}\end{array}\right]$ is determined such that

$$
P\left(\left.\epsilon(k) \in\left[\begin{array}{ll}
r_{1} & r_{2}
\end{array}\right] \right\rvert\, H_{0}\right)=1-\alpha
$$

where α is the level of significance.

- For $\alpha=0.05$, the limits

$$
r_{1,2} \approx \frac{1}{2 m}(\pm 1.96+\sqrt{2 m-1})^{2}
$$

Remarks

- For an unbiased estimator, the NIS check is directly comparable to a credibility check on the innovation covariance.
- In an N Monte Carlo runs, we use the averaged NIS statistics.

Credibility Check on Posterior Error Covariance

- Define normalized estimation error-squared (NEES):

$$
\epsilon(k)=\tilde{x}_{k}^{T} P_{k \mid k}^{-1} \tilde{x}_{k}
$$

where the estimation error

$$
\tilde{x}_{k}=\left(x_{k}-\hat{x}_{k \mid k}\right)
$$

- Distribution of $\epsilon(k)$:

$$
\epsilon(k) \sim \chi_{n}^{2}
$$

where n is the state-vector dimension.

- Following a similar procedure as in the NIS case, we may check the credibility of filter-estimated covariance at an α level.

Extended Kalman Filters

- The EKF assumes the following dynamic state-space model:

$$
\begin{align*}
\text { Process equation: } x_{k} & =f\left(x_{k-1}\right)+v_{k-1} \tag{1}\\
\text { Measurement equation: } z_{k} & =h\left(x_{k}\right)+w_{k} \tag{2}
\end{align*}
$$

- Idea: Linearize nonlinear functions using the first-order Taylor series expansion.
- Let $x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$. Then we write y, where $y=f(x)$ as

$$
y=f(x) \approx f(\bar{x})+\underbrace{F(x-\bar{x})}_{\text {linear }},
$$

where the Jacobian

$$
F=\left[\nabla_{x} f(x)^{T}\right]_{x=\bar{x}}^{T}
$$

EKF (Cont'd)

- Approximates y to be Gaussian with the following mean and covariance:

$$
\begin{aligned}
\bar{y} & =\mathbb{E}(f(x)) \\
& \approx f(\bar{x}) \\
\Sigma_{y} & \approx F \Sigma_{x} F^{T} .
\end{aligned}
$$

Final Remarks

- For a nonlinear system, all conditional densities are non-Gaussian. However all the above methods assume Gaussianity suggesting that they wont fully characterize a nonlinear filter accuracy
- EKF estimate is biased $\Rightarrow P_{k \mid k}<$ MSE
- To meet the condition of zero-mean error (unbiased mean error), we subtract off mean errors before applying the NIS or NEES.
- In the EKF case, the information matrices of the CRLB are given by:

$$
\begin{aligned}
D_{k-1}^{11} & =\mathbb{E}\left(F_{k-1}^{T} Q_{k-1}^{-1} F_{k-1}\right) \\
D_{k-1}^{12} & =\left[D_{k-1}^{21}\right]^{T}=-\mathbb{E}\left(F_{k-1}^{T}\right) Q_{k-1}^{-1} \\
D_{k-1}^{22} & =Q_{k-1}^{-1}+\mathbb{E}\left(H_{k}^{T} R_{k}^{-1} H_{k}\right)
\end{aligned}
$$

where F and H are Jacobians of the state and measurement functions.

- The expectation operators are replaced by Monte Carlo averages

(useful in simulations!)

References

- Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with applications to target tracking, Wiley, 2001.
- D. Simon Optimal state estimation, Wiley 2006.

Thank you!

Q2. Discuss solution of ill-posed systems of equations with regard to methods

Well (ill)-Posed Problems

- The quality of solution depends on
- the problem itself and
- the computer
- According to Hadamard, a problem is well-posed if the solution
- exists
- is unique and
- depends continuously on the data (stable).
- Typically practical inverse problems are all ill-posed.
- Even well-posed problems may be unstable or ill-conditioned when implemented in digital computers.

Solutions for Linear Systems

- A linear system of equations in a matrix form:

$$
A x=b
$$

where the coefficient matrix $A \in \mathbb{R}^{m \times n}$, the constant vector $b \in \mathbb{R}^{m}$ and the variable vector $x \in \mathbb{R}^{n}$.

- Suppose $m=n$. The solution

$$
\hat{x}=A^{-1} b
$$

may be disastrous especially when n is large.

- Types of the solution:
- No solution
- Multiple solutions
- Solving methods: decompositions and regularization

Cholesky Decomposition

- Suppose the matrix A is
- Symmetric and
- Positive definite
- Decompose A into a unique lower and upper triangular matrices:

$$
A=L L^{T}
$$

- On the LHS, we have

$$
A \hat{x}=L L^{T} \hat{x}=L\left(L^{T}\right) \hat{x}
$$

- Solve by the forward and backward substitutions:

$$
\begin{aligned}
L y & =b \\
L^{T} \hat{x} & =y
\end{aligned}
$$

- fast, stable and requires less space!

Truncated SVD

- Decomposes any matrix A as

$$
A=U D V^{T}
$$

where U and V are orthogonal matrices such that $U^{T} U=V^{T} V=I ; D$ is diagonal with singular values of A.

- If A is non-singular, we write

$$
A^{-1}=V \Sigma^{-1} U^{T}
$$

where $\Sigma^{-1}=\left[\operatorname{diag}\left(\frac{1}{\sigma_{i}}\right)\right]$.

Overdetermined Systems

- More equations than unknowns
- b does not lie in $\mathscr{R}(A) \Rightarrow$ No solution
- Yields the unique solution by minimizing the residual $\|A x-b\|_{2}$.
- Using the SVD, we write

$$
\begin{aligned}
\min \|A x-b\| & =\min \left\|U \Sigma V^{T}-b\right\| \\
& =\min \left\|\Sigma V^{T} x-U^{T} b\right\| \\
& =\min \|\Sigma v-\tilde{b}\|,
\end{aligned}
$$

where $v=V^{T} x$ and $\tilde{b}=U^{T} b$.

- The min. length solution for v is

$$
v=\Sigma^{+} \tilde{b}
$$

- Hence

$$
\hat{x}=V \Sigma^{+} \tilde{b}=V \Sigma^{+} U^{T} b .
$$

- Summary:
- Compute the SVD of $A: \quad A=U \Sigma V^{T}$
- Zero-out 'small' σ_{i} 's of Σ.
- Obtain

$$
\hat{x}=V \Sigma^{+}\left(U^{T} b\right),
$$

where $\Sigma^{+}=\left[\operatorname{diag}\left(\frac{1}{\sigma_{i}}\right)\right]$.

Underdetermined Systems

- Effectively, fewer equations than unknowns
- $b \in \mathscr{R}(A) \Rightarrow$ Multiple solutions
- We may choose the smallest norm solution similarly to the overdetermined case.
- Pros:
- Robust when A is singular or near singular
- Treats both the underdetermined and overdetermined systems identically
- Cons:
- Computational more demanding.

Regularized LS method

- To improves the stability, add regularization in the minimization:

$$
\hat{x}=\arg \min \|A x-b\|^{2}+\|\Gamma x\|^{2}
$$

where Γ is the regularization matrix or Tikhonov matrix

- Regularized solution:

$$
\hat{x}=\left(A^{T} A+\Gamma^{T} \Gamma\right)^{-1} A^{T} b
$$

- $\Gamma=0 \Rightarrow$ Conventional LS solution.

Choice of Γ Using the KF Theory

- Perceive the following to be the measurement equation:

$$
b_{k}=A x_{k}+w_{k}
$$

- Suppose $\hat{x}_{k \mid k-1} \sim \mathcal{N}\left(0, \sigma_{x}^{2} I\right)$, and $w_{k} \sim \mathcal{N}\left(0, \sigma_{b}^{2} I\right)$.
- Then the updated state:

$$
\begin{aligned}
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+W\left(b_{k}-\hat{b}_{k \mid k-1}\right) \\
\hat{x} & =W b \\
& =\left[A^{T}\left(\sigma_{b}^{2} I\right)^{-1} A+\left(\sigma_{x}^{2} I\right)^{-1}\right]^{-1} A^{T}\left(\sigma_{b}^{2} I\right)^{-1} b \\
& =\frac{1}{\sigma_{b}^{2}}\left[\frac{1}{\sigma_{b}^{2}} A^{T} A+\frac{1}{\sigma_{x}^{2}} I\right]^{-1} A^{T} b \\
& =\left[A^{T} A+\left(\frac{\sigma_{b}}{\sigma_{x}}\right)^{2} I\right]^{-1} A^{T} b
\end{aligned}
$$

- The above expression suggests to choose Γ to be $\Gamma=\alpha I$, where $\alpha=\frac{\sigma_{b}}{\sigma_{x}}$.

Pseudo-inverses

- works well for full-rank matrix A.
- Case (i): Overdetermined systems
- Yields the unique solution in the minimum residual, $\|A x-b\|$ sense.
- Write

$$
A^{T} A \hat{x}=A^{T} b
$$

- As $A^{T} A$ is non-singular, we get

$$
\hat{x}=A^{+} b,
$$

where the pseudo-inverse matrix

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

Pseudo-inverse (Cont'd)

- Case (ii): Underdetermined systems
- Yields the unique solution in the smallest length, $\|x\|$ sense:

$$
\hat{x}=A^{+} b,
$$

where the pseudo-inverse matrix

$$
A^{+}=A^{T}\left(A A^{T}\right)^{-1}
$$

- Limitations:
- $A^{T} A$ may be singular or near-singular
- matrix-squared form may amplify roundoff errors !
- Remedy: Use the SVD on $A^{T} A$ or the QR on A directly.

QR Decomposition in Pseudo-inverses

- Decompose A into

$$
A=Q R
$$

where R is upper triangular; Q is orthogonal such that $Q Q^{T}=I$.

- For an overdetermined case,

$$
\begin{aligned}
\hat{x} & =\left(A^{T} A\right)^{-1} A^{T} b \\
& =\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} b \\
& =\left(R^{T} R\right)^{-1} R^{T} Q^{T} b=R^{-1} Q^{T} b \\
\Rightarrow R \hat{x} & =\underbrace{Q^{T} b}_{\text {rotate }}
\end{aligned}
$$

- Use back substitution to get the stable solution.

References

- J. Reilly, ECE 712:Matrix Computations for Signal Processing, Course notes.
- G. Golub and C. Van Loan, Matrix Computations, John Hopkins, 1996.
- T. Moon and W. Stirling, Mathematical Methods and Algorithms, Prentice-Hall, 2001.

Thank you!

Q3. Derive the Wiener filter (non-causal) for a stationary process with given spectral characteristics

Background

Figure 1: Signal Flow Diagram

- Goal: filter out noise that has corrupted a signal
- Assumptions:
- Additive noise
- signal and noise are wide-sense stationary processes
- Spectral characteristics are known a priori.
- Performance criteria: Minimum mean-square error (MMSE).

Model setup

- The input-output relationship of the linear time-invariant system:

$$
\begin{aligned}
\hat{x}(t) & =\int_{-\infty}^{t} h(\tau) z(t-\tau) d \tau \\
& =h(t) * z(t)
\end{aligned}
$$

where

- $h(t)$ is the impulse response of the filter
$-z(t)$ is the observed process and related to the unknown signal process $x(t)$ via

$$
z(t)=x(t)+n(t)
$$

where $n(t)$ is the additive noise.
$-\hat{x}(t)$ is the output process.

Non-causal Wiener Filtering

- Under non-causality, past and future observations are known; hence the Wiener filter(WF) acts as a smoother.
- Redefine the goal to estimate

$$
\begin{equation*}
\hat{x}(t)=\mathbb{E}[x(t) \mid z(\xi),-\infty<\xi<\infty] \tag{1}
\end{equation*}
$$

- The WF minimizes the MSE function:

$$
\begin{aligned}
J & =\mathbb{E}\left[(x(t)-\hat{x}(t))^{2}\right] \\
& =\mathbb{E}\left[\left(x(t)-\int_{-\infty}^{\infty} h(\alpha) z(t-\alpha) d \alpha\right)^{2}\right]
\end{aligned}
$$

- Solve the above minimization problem using the orthogonality principle.

Orthogonality Principle

Figure 2: Projection of signal onto the observation subspace

- Idea: To get the minimum error in the MSE sense, the observation subspace has to be orthogonal to the estimation-error subspace.

Orthogonality Principle (Cont'd)

- Using the orthogonality principle we have

$$
\begin{aligned}
\mathbb{E}[(x(t)-\hat{x}(t)) z(t-\tau)] & =0 \\
\mathbb{E}\left[\left\{x(t)-\int_{-\infty}^{\infty} h(\alpha) z(t-\alpha) d \alpha\right\} z(t-\tau)\right] & =0 \\
\mathbb{E}[x(t) z(t-\tau)]-\int_{-\infty}^{\infty} h(\alpha) E[z(t-\alpha) z(t-\tau)] d \alpha & =0 \\
\Rightarrow R_{x z}(\tau)=\int_{-\infty}^{\infty} h(\alpha) \mathbb{E}[z(t-\alpha) z(t-\tau)] d \alpha &
\end{aligned}
$$

- Substituting $t=\xi+\tau$ yields

$$
\begin{aligned}
\mathrm{RHS} & =\int_{-\infty}^{\infty} h(\alpha) \mathbb{E}[z(\xi+\tau-\alpha) z(\xi)] d \alpha \\
& =\int_{-\infty}^{\infty} h(\alpha) R_{z}(\tau-\alpha) d \alpha \\
& =h(\tau) * R_{z}(\tau)
\end{aligned}
$$

- Hence, we get the cross-correlation function:

$$
R_{x z}(\tau)=h(\tau) * R_{z}(\tau)
$$

Orthogonality (Cont'd)

- Taking the FT yields the cross-power spectral density:

$$
\begin{equation*}
S_{x z}(\omega)=H(\omega) S_{z}(\omega) \tag{2}
\end{equation*}
$$

- The transfer function of the WF

$$
\begin{equation*}
H(\omega)=\frac{S_{x z}(\omega)}{S_{z}(\omega)} \tag{3}
\end{equation*}
$$

- Further assumptions:
$-x(t)$ and $n(t)$ are independent stochastic processes \Rightarrow zero cross-correlation.
- $n(t)$ has zero-mean.
- Under this assumption, we have
$-R_{x z}(\tau)=R_{x}(\tau)$
$-R_{z}(\tau)=R_{x}(\tau)+R_{n}(\tau)$

Orthogonality Principle (Cont'd)

- Equivalently, taking the FT yields

$$
\begin{aligned}
& -S_{x z}(\omega)=S_{x}(\omega) \\
& -S_{z}(\omega)=S_{x}(\omega)+S_{n}(\omega)
\end{aligned}
$$

- A simplified transfer function of the WF

$$
\begin{equation*}
H(\omega)=\frac{S_{x}(\omega)}{S_{x}(\omega)+S_{n}(\omega)} \tag{4}
\end{equation*}
$$

- Interesting Observations:
- The transfer function is non-zero only where the signal has power content.
$-H(\omega)=\frac{1}{1+\frac{1}{\frac{1}{S_{n}(\omega)}}} \Rightarrow$ emphasizes frequencies where the SNR is large.

Wiener Filter: Block Diagram

Figure 3: Time Domain

Figure 4: Frequency Domain

Toy Example

- Known. $R_{x}(\tau)=\frac{\sin (W \tau)}{W \tau}$ with $W=5 \times 10^{3} ; S_{n}(\omega)=10^{-5}$
- Find $S_{x}(\omega)$:

$$
S_{x}(\omega)=\frac{1}{2 W} \prod\left(\frac{2 \pi \omega}{W}\right)
$$

- Find $H(\omega)$:

$$
H(\omega)= \begin{cases}\frac{1}{1.1}, & |\omega| \leq W \\ 0, & \text { otherwise }\end{cases}
$$

- WF acts as an ideal LPF.

Final Remarks

- WF is applied in image restoration.
- WF has the following limitations:
- Not amenable to state-vector estimation problems
- Not applicable to non-stationary signals
- Non-causal WFs are not suitable for real-time applications

References

- A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed., McGraw Hill, 2002.
- K. M. Wong, ECE 762: Detection and Estimation Theory, Course Notes.
- R. Yates and D. Goodman Probability and Stochastic Processes, Wiley, 2004.

Thank you!

