Q1. Discuss the evaluation of covariance matrices in relation to Kalman and extended Kalman filtering

Problem Setup

• The KF assumes the following dynamic state-space model:

Process equation: $x_k = F_k x_{k-1} + v_{k-1}$

Measurement equation: $z_k = H_k x_k + w_k$

- Assumptions:
 - Additive uncorrelated Gaussian noise sequences with known statistics. i.e., $v_k \sim \mathcal{N}(0, Q_{k-1})$ and $w_k \sim \mathcal{N}(0, R_k)$
 - Known initial estimate. i.e., $x_0 \sim \mathcal{N}(\hat{x}_{0|0}, P_{0|0})$
- Objective: Estimate the state at time k recursively given $\{z_1, z_2, \dots z_k\}.$
- Performance criteria: Minimum mean-square error.

Two Basic Operations

• Predict:

$$\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1}$$
$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_{k-1}$$

• Correct:

$$\hat{z}_{k|k-1} = H_k \hat{x}_{k|k-1}
S_{k|k-1} = H_k P_{k|k-1} H_k^T + R_k
W_k = P_{k|k-1} H_k^T S_{k|k-1}^{-1}
\hat{x}_{k|k} = \hat{x}_{k|k-1} + W_k (z_k - \hat{z}_{k|k-1})
P_{k|k} = P_{k|k-1} - W_k H_k P_{k|k-1}$$

Error Covariances: Analysis

- As a self-assessment of its own errors, the KF yields the error covariance matrices:
 - state \Rightarrow predicted and posterior error covariances
 - measurement \Rightarrow innovation covariance
- Why we evaluate covariances?
 - To verify the credibility of the filter: if the actual error is consistent with the filter-computed error?
 - To compare various filter performances
 - To probe into modeling errors

Error Covariances (Cont'd)

- Tools for evaluation:
 - Mean-Squared Error (MSE)
 - Posterior Cramer-Rao Lower Bound (PCRLB)
 - Normalized Innovation-Squared (NIS)
 - Normalized Estimation Error-squared(NEES)
- The PCRLB and the NIS can be used in real-time applications.

Mean-Squared Error

• Given the true state x_k , the MSE (matrix) of the filter estimate is defined by

$$MSE(k) = \mathbb{E}((x_k - \hat{x}_{k|k})(x_k - \hat{x}_{k|k})^T)$$

- The gain-posterior covariance relationship: $W_k = P_{k|k} H^T R^{-1}$.
- 3 practical cases:

$$-P_{k|k} = MSE(k) \Rightarrow optimal$$

$$-P_{k|k} > MSE(k) \Rightarrow pessimistic$$

- $P_{k|k} < MSE(k) \Rightarrow \text{optimistic}$
- MSE = variance + bias-squared (in a scalar case).

PCRLB

• The covariance matrix $P_{k|k}$ of an unbiased state estimator $\widehat{\mathbf{x}}_{k|k}$ has a lower bound

$$P_{k|k} \succeq J_k^{-1}$$

where the Fisher information matrix

$$J_k = D_{k-1}^{22} - D_{k-1}^{21} \left(J_{k-1} + D_{k-1}^{11} \right)^{-1} D_{k-1}^{12} \qquad (k > 0)$$

where

$$D_{k-1}^{11} = -E\left\{\nabla_{\mathbf{x}_{k-1}}\left[\nabla_{\mathbf{x}_{k-1}}\ln p(\mathbf{x}_{k}|\mathbf{x}_{k-1})\right]^{T}\right\}$$

$$D_{k-1}^{21} = -E\left\{\nabla_{\mathbf{x}_{k-1}}\left[\nabla_{\mathbf{x}_{k}}\ln p(\mathbf{x}_{k}|\mathbf{x}_{k-1})\right]^{T}\right\}$$

$$D_{k-1}^{12} = -E\left\{\nabla_{\mathbf{x}_{k}}\left[\nabla_{\mathbf{x}_{k-1}}\ln p(\mathbf{x}_{k}|\mathbf{x}_{k-1})\right]^{T}\right\} = \left[D_{k-1}^{21}\right]^{T}$$

$$D_{k-1}^{22} = -E\left\{\nabla_{\mathbf{x}_{k}}\left[\nabla_{\mathbf{x}_{k}}\ln p(\mathbf{x}_{k}|\mathbf{x}_{k-1})\right]^{T}\right\} - E\left\{\nabla_{\mathbf{x}_{k}}\left[\nabla_{\mathbf{x}_{k}}\ln p(\mathbf{z}_{k}|\mathbf{x}_{k})\right]^{T}\right\}$$

PCRLB for the KF

• For the LG case, information matrices

$$D_{k-1}^{11} = F_{k-1}^T Q_{k-1}^{-1} F_{k-1}$$

$$D_{k-1}^{12} = [D_{k-1}^{21}]^T = -F_{k-1}^T Q_{k-1}^{-1}$$

$$D_{k-1}^{22} = Q_{k-1}^{-1} + H_k^T R_k^{-1} H_k$$

• Hence we get the Fisher information matrix at time k as

$$J_{k} = Q_{k-1}^{-1} - Q_{k-1}^{-1} F_{k-1} \left(J_{k-1} + F_{k-1}^{T} Q_{k-1}^{-1} F_{k-1} \right)^{-1} F_{k-1}^{T} Q_{k-1}^{-1} + J_{k}^{z}$$

= $\left(Q_{k-1} + F_{k-1} J_{k-1}^{-1} F_{k-1}^{T} \right)^{-1} + H_{k}^{T} R_{k}^{-1} H_{k}$

• Obtain the same when replacing J_k with $P_{k|k}^{-1} \Rightarrow \text{KF}$ is an efficient estimator for a linear-Gaussian system.

Credibility Check on Innovation Covariance

- Properties of innovation sequences
 - zero-mean Gaussian
 - uncorrelated.
- Define normalized innovation-squared (NIS):

$$\epsilon(k) = \nu_k^T S_{k|k}^{-1} \nu_k$$

where the innovation and its covariance

$$\nu_k = (z_k - \hat{z}_{k|k-1})$$
$$S_{k|k-1} = \operatorname{cov}(\nu_k)$$

• Distribution of $\epsilon(k)$:

$$\epsilon(k) ~\sim~ \chi_m^2$$

where m is the measurement-vector dimension or the dof.

Credibility Check (Cont'd)

• Postulate the null hypothesis

$$H_0: \mathbb{E}[\epsilon(k)] = m.$$

• Accept both the innovation and its covariance commensurate with theoretical results if

$$\epsilon(k) \in [r_1, r_2]$$

• The acceptance interval $[r_1 \ r_2]$ is determined such that

 $P(\epsilon(k) \in [r_1 \ r_2]|H_0) = 1 - \alpha$

where α is the level of significance.

• For $\alpha = 0.05$, the limits

$$r_{1,2} \approx \frac{1}{2m} (\pm 1.96 + \sqrt{2m-1})^2$$

Remarks

- For an unbiased estimator, the NIS check is directly comparable to a credibility check on the innovation covariance.
- In an N Monte Carlo runs, we use the averaged NIS statistics.

Credibility Check on Posterior Error Covariance

• Define normalized estimation error-squared (NEES):

$$\epsilon(k) = \tilde{x}_k^T P_{k|k}^{-1} \tilde{x}_k$$

where the estimation error

$$\tilde{x}_k = (x_k - \hat{x}_{k|k})$$

• Distribution of $\epsilon(k)$:

$$\epsilon(k) \sim \chi_n^2$$

where n is the state-vector dimension.

• Following a similar procedure as in the NIS case, we may check the credibility of filter-estimated covariance at an α level.

Extended Kalman Filters

• The EKF assumes the following dynamic state-space model:

Process equation:
$$x_k = f(x_{k-1}) + v_{k-1}$$
 (1)

Measurement equation: $z_k = h(x_k) + w_k$ (2)

• Idea: Linearize nonlinear functions using the first-order Taylor series expansion.

• Let $x \sim \mathcal{N}(\bar{x}, \Sigma_x)$. Then we write y, where y = f(x) as

$$y = f(x) \approx f(\bar{x}) + \underbrace{F(x - \bar{x})}_{\text{linear}},$$

where the Jacobian

$$F = [\nabla_x f(x)^T]_{x=\bar{x}}^T.$$

EKF (Cont'd)

• Approximates y to be Gaussian with the following mean and covariance:

$$\bar{y} = \mathbb{E}(f(x))$$

 $\approx f(\bar{x})$
 $\Sigma_y \approx F\Sigma_x F^T.$

Final Remarks

- For a nonlinear system, all conditional densities are non-Gaussian. However all the above methods assume Gaussianity suggesting that they wont fully characterize a nonlinear filter accuracy
- EKF estimate is biased $\Rightarrow P_{k|k} < MSE$
- To meet the condition of zero-mean error (unbiased mean error), we subtract off mean errors before applying the NIS or NEES.
- In the EKF case, the information matrices of the CRLB are given by:

$$D_{k-1}^{11} = \mathbb{E}(F_{k-1}^T Q_{k-1}^{-1} F_{k-1})$$

$$D_{k-1}^{12} = [D_{k-1}^{21}]^T = -\mathbb{E}(F_{k-1}^T)Q_{k-1}^{-1}$$

$$D_{k-1}^{22} = Q_{k-1}^{-1} + \mathbb{E}(H_k^T R_k^{-1} H_k)$$

where F and H are Jacobians of the state and measurement functions.

• The expectation operators are replaced by Monte Carlo averages

(useful in simulations!)

References

- Y. Bar-Shalom, X. Li, and T. Kirubarajan, *Estimation with applications to target tracking*, Wiley, 2001.
- D. Simon Optimal state estimation, Wiley 2006.

Thank you!

Q2. Discuss solution of ill-posed systems of equations with regard to methods

Well (ill)-Posed Problems

- The quality of solution depends on
 - the problem itself and
 - the computer
- According to Hadamard, a problem is well-posed if the solution
 - exists
 - is unique and
 - depends continuously on the data (stable).
- Typically practical inverse problems are all ill-posed.
- Even well-posed problems may be unstable or ill-conditioned when implemented in digital computers.

Solutions for Linear Systems

• A linear system of equations in a matrix form:

Ax = b

where the coefficient matrix $A \in \mathbb{R}^{m \times n}$, the constant vector $b \in \mathbb{R}^m$ and the variable vector $x \in \mathbb{R}^n$.

• Suppose m = n. The solution

$$\hat{x} = A^{-1}b$$

may be disastrous especially when n is large.

• Types of the solution:

– No solution

- Multiple solutions
- Solving methods: decompositions and regularization

Cholesky Decomposition

- Suppose the matrix A is
 - Symmetric and
 - Positive definite
- Decompose A into a unique lower and upper triangular matrices:

$$A = LL^T$$

• On the LHS, we have

$$A\hat{x} = LL^T\hat{x} = L(L^T)\hat{x}$$

• Solve by the forward and backward substitutions:

$$Ly = b$$
$$L^T \hat{x} = y$$

• fast, stable and requires less space!

Truncated SVD

• Decomposes any matrix A as

$$A = UDV^T,$$

where U and V are orthogonal matrices such that $U^{T}U = V^{T}V = I$; D is diagonal with singular values of A.

• If A is non-singular, we write

$$A^{-1} = V\Sigma^{-1}U^T,$$

where $\Sigma^{-1} = [\operatorname{diag}(\frac{1}{\sigma_i})].$

Overdetermined Systems

- More equations than unknowns
- b does not lie in $\mathscr{R}(A) \Rightarrow$ No solution
- Yields the unique solution by minimizing the residual $||Ax b||_2$.
- Using the SVD, we write

$$\min ||Ax - b|| = \min ||U\Sigma V^T - b||$$
$$= \min ||\Sigma V^T x - U^T b||$$
$$= \min ||\Sigma v - \tilde{b}||,$$

where $v = V^T x$ and $\tilde{b} = U^T b$.

• The min. length solution for v is

$$v = \Sigma^+ \tilde{b}.$$

• Hence

$$\hat{x} = V\Sigma^+ \tilde{b} = V\Sigma^+ U^T b.$$

- Summary:
 - Compute the SVD of A: $A = U\Sigma V^T$
 - Zero-out 'small' σ_i 's of Σ .
 - Obtain

$$\hat{x} = V\Sigma^+(U^Tb),$$

where $\Sigma^+ = [\operatorname{diag}(\frac{1}{\sigma_i})].$

Underdetermined Systems

- Effectively, fewer equations than unknowns
- $b \in \mathscr{R}(A) \Rightarrow$ Multiple solutions
- We may choose the smallest norm solution similarly to the overdetermined case.
- Pros:
 - Robust when A is singular or near singular
 - Treats both the underdetermined and overdetermined systems identically
- Cons:
 - Computational more demanding.

Regularized LS method

• To improves the stability, add regularization in the minimization:

$$\hat{x} = \arg \min ||Ax - b||^2 + ||\Gamma x||^2$$

where Γ is the regularization matrix or *Tikhonov* matrix

• Regularized solution:

$$\hat{x} = (A^T A + \Gamma^T \Gamma)^{-1} A^T b$$

• $\Gamma = 0 \Rightarrow$ Conventional LS solution.

Choice of Γ Using the KF Theory

• Perceive the following to be the measurement equation:

$$b_k = Ax_k + w_k$$

- Suppose $\hat{x}_{k|k-1} \sim \mathcal{N}(0, \sigma_x^2 I)$, and $w_k \sim \mathcal{N}(0, \sigma_b^2 I)$.
- Then the updated state:

$$\begin{aligned} \hat{x}_{k|k} &= \hat{x}_{k|k-1} + W(b_k - b_{k|k-1}) \\ \hat{x} &= Wb \\ &= \left[A^T (\sigma_b^2 I)^{-1} A + (\sigma_x^2 I)^{-1} \right]^{-1} A^T (\sigma_b^2 I)^{-1} b \\ &= \frac{1}{\sigma_b^2} \left[\frac{1}{\sigma_b^2} A^T A + \frac{1}{\sigma_x^2} I \right]^{-1} A^T b \\ &= \left[A^T A + \left(\frac{\sigma_b}{\sigma_x} \right)^2 I \right]^{-1} A^T b \end{aligned}$$

• The above expression suggests to choose Γ to be $\Gamma = \alpha I$, where $\alpha = \frac{\sigma_b}{\sigma_x}$.

Pseudo-inverses

- works well for full-rank matrix A.
- Case (i): Overdetermined systems
 - Yields the unique solution in the minimum residual, ||Ax b|| sense.
 - Write

$$A^T A \hat{x} = A^T b$$

- As $A^T A$ is non-singular, we get

$$\hat{x} = A^+ b,$$

where the pseudo-inverse matrix

$$A^+ = (A^T A)^{-1} A^T.$$

Pseudo-inverse (Cont'd)

- Case (ii): Underdetermined systems
 - Yields the unique solution in the smallest length, ||x|| sense:

$$\hat{x} = A^+ b,$$

where the pseudo-inverse matrix

$$A^+ = A^T (AA^T)^{-1}.$$

- Limitations:
 - $-A^T A$ may be singular or near-singular
 - matrix-squared form may amplify roundoff errors !
 - Remedy: Use the SVD on $A^T A$ or the QR on A directly.

QR Decomposition in Pseudo-inverses

• Decompose A into

$$A = QR,$$

where R is upper triangular; Q is orthogonal such that $QQ^T = I$.

• For an overdetermined case,

$$\hat{x} = (A^T A)^{-1} A^T b$$

$$= (R^T Q^T Q R)^{-1} R^T Q^T b$$

$$= (R^T R)^{-1} R^T Q^T b = R^{-1} Q^T b$$

$$\Rightarrow R \hat{x} = \underbrace{Q^T b}_{\text{rotate}}$$

• Use back substitution to get the stable solution.

References

- J. Reilly, ECE 712:Matrix Computations for Signal Processing, Course notes.
- G. Golub and C. Van Loan, *Matrix Computations*, John Hopkins, 1996.
- T. Moon and W. Stirling, *Mathematical Methods and Algorithms*, Prentice-Hall, 2001.

Q3. Derive the Wiener filter (non-causal) for a stationary process with given spectral characteristics

Background

Figure 1: Signal Flow Diagram

- Goal: filter out noise that has corrupted a signal
- Assumptions:
 - Additive noise
 - signal and noise are wide-sense stationary processes
 - Spectral characteristics are known a priori.
- Performance criteria: Minimum mean-square error (MMSE).

Model setup

• The input-output relationship of the linear time-invariant system:

$$\hat{x}(t) = \int_{-\infty}^{t} h(\tau) z(t-\tau) d\tau$$
$$= h(t) * z(t)$$

where

- -h(t) is the impulse response of the filter
- z(t) is the observed process and related to the unknown signal process x(t) via

$$z(t) = x(t) + n(t)$$

where n(t) is the additive noise.

 $-\hat{x}(t)$ is the output process.

Non-causal Wiener Filtering

- Under non-causality, past and future observations are known; hence the Wiener filter(WF) acts as a smoother.
- Redefine the goal to estimate

$$\hat{x}(t) = \mathbb{E}[x(t)|z(\xi), -\infty < \xi < \infty]$$
(1)

• The WF minimizes the MSE function:

$$J = \mathbb{E}[(x(t) - \hat{x}(t))^2]$$

= $\mathbb{E}[(x(t) - \int_{-\infty}^{\infty} h(\alpha) z(t - \alpha) d\alpha)^2]$

• Solve the above minimization problem using the orthogonality principle.

Orthogonality Principle

Figure 2: Projection of signal onto the observation subspace

• Idea: To get the minimum error in the MSE sense, the observation subspace has to be orthogonal to the estimation-error subspace.

Orthogonality Principle (Cont'd)

• Using the orthogonality principle we have

$$\mathbb{E}[(x(t) - \hat{x}(t))z(t - \tau)] = 0$$
$$\mathbb{E}[\{x(t) - \int_{-\infty}^{\infty} h(\alpha)z(t - \alpha)d\alpha\}z(t - \tau)] = 0$$
$$\mathbb{E}[x(t)z(t - \tau)] - \int_{-\infty}^{\infty} h(\alpha)E[z(t - \alpha)z(t - \tau)]d\alpha = 0$$
$$\Rightarrow R_{xz}(\tau) = \int_{-\infty}^{\infty} h(\alpha)\mathbb{E}[z(t - \alpha)z(t - \tau)]d\alpha.$$

• Substituting $t = \xi + \tau$ yields

RHS =
$$\int_{-\infty}^{\infty} h(\alpha) \mathbb{E}[z(\xi + \tau - \alpha)z(\xi)] d\alpha$$

= $\int_{-\infty}^{\infty} h(\alpha) R_z(\tau - \alpha) d\alpha$
= $h(\tau) * R_z(\tau)$

• Hence, we get the cross-correlation function:

 $R_{xz}(\tau) = h(\tau) * R_z(\tau)$

Orthogonality (Cont'd)

• Taking the FT yields the cross-power spectral density:

$$S_{xz}(\omega) = H(\omega)S_z(\omega) \tag{2}$$

• The transfer function of the WF

$$H(\omega) = \frac{S_{xz}(\omega)}{S_z(\omega)} \tag{3}$$

- Further assumptions:
 - -x(t) and n(t) are independent stochastic processes \Rightarrow zero cross-correlation.
 - n(t) has zero-mean.
- Under this assumption, we have

$$-R_{xz}(\tau) = R_x(\tau)$$

$$-R_z(\tau) = R_x(\tau) + R_n(\tau)$$

Orthogonality Principle (Cont'd)

• Equivalently, taking the FT yields

$$-S_{xz}(\omega) = S_x(\omega)$$

$$-S_z(\omega) = S_x(\omega) + S_n(\omega)$$

• A simplified transfer function of the WF

$$H(\omega) = \frac{S_x(\omega)}{S_x(\omega) + S_n(\omega)}$$

- Interesting Observations:
 - The transfer function is non-zero only where the signal has power content.

$$- H(\omega) = \frac{1}{1 + \frac{1}{\frac{S_x(\omega)}{S_n(\omega)}}} \Rightarrow \text{ emphasizes frequencies where the SNR is}$$
 large.

(4)

Wiener Filter: Block Diagram

Figure 3: Time Domain

Figure 4: Frequency Domain

Toy Example

- Known. $R_x(\tau) = \frac{\sin(W\tau)}{W\tau}$ with $W = 5 \times 10^3$; $S_n(\omega) = 10^{-5}$
- Find $S_x(\omega)$:

$$S_x(\omega) = \frac{1}{2W} \prod \left(\frac{2\pi\omega}{W}\right)$$

• Find $H(\omega)$:

$$H(\omega) = \begin{cases} \frac{1}{1.1}, & |\omega| \le W; \\ 0, & \text{otherwise.} \end{cases}$$

• WF acts as an ideal LPF.

Final Remarks

- WF is applied in image restoration.
- WF has the following limitations:
 - Not amenable to state-vector estimation problems
 - Not applicable to non-stationary signals
 - Non-causal WFs are not suitable for real-time applications

References

- A. Papoulis and S. U. Pillai, *Probability, Random Variables and Stochastic Processes*, 4th ed., McGraw Hill, 2002.
- K. M. Wong, *ECE 762: Detection and Estimation Theory*, Course Notes.
- R. Yates and D. Goodman *Probability and Stochastic Processes*, Wiley, 2004.

