
Q1. Discuss the evaluation of covariance
matrices in relation to Kalman and extended

Kalman filtering
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Problem Setup

• The KF assumes the following dynamic state-space model:

Process equation: xk = Fkxk−1 + vk−1

Measurement equation: zk = Hkxk + wk

• Assumptions:

– Additive uncorrelated Gaussian noise sequences with known

statistics. i.e., vk ∼ N (0, Qk−1) and wk ∼ N (0, Rk)

– Known initial estimate. i.e., x0 ∼ N (x̂0|0, P0|0)

• Objective: Estimate the state at time k recursively given

{z1, z2, . . . zk}.

• Performance criteria: Minimum mean-square error.
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Two Basic Operations

• Predict:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk−1

• Correct:

ẑk|k−1 = Hkx̂k|k−1

Sk|k−1 = HkPk|k−1H
T
k + Rk

Wk = Pk|k−1H
T
k S−1

k|k−1

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1)

Pk|k = Pk|k−1 − WkHkPk|k−1
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Error Covariances: Analysis

• As a self-assessment of its own errors, the KF yields the error

covariance matrices:

– state ⇒predicted and posterior error covariances

– measurement ⇒ innovation covariance

• Why we evaluate covariances?

– To verify the credibility of the filter: if the actual error is

consistent with the filter-computed error?

– To compare various filter performances

– To probe into modeling errors
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Error Covariances (Cont’d)

• Tools for evaluation:

– Mean-Squared Error (MSE)

– Posterior Cramer-Rao Lower Bound (PCRLB)

– Normalized Innovation-Squared (NIS)

– Normalized Estimation Error-squared(NEES)

• The PCRLB and the NIS can be used in real-time applications.
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Mean-Squared Error

• Given the true state xk, the MSE (matrix) of the filter estimate is

defined by

MSE(k) = E((xk − x̂k|k)(xk − x̂k|k)
T )

• The gain-posterior covariance relationship: Wk = Pk|kH
T R−1.

• 3 practical cases:

– Pk|k = MSE(k) ⇒ optimal

– Pk|k > MSE(k) ⇒ pessimistic

– Pk|k < MSE(k) ⇒ optimistic

• MSE = variance + bias-squared (in a scalar case).
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PCRLB

• The covariance matrix Pk|k of an unbiased state estimator x̂k|k has

a lower bound

Pk|k � J−1
k

where the Fisher information matrix

Jk = D22
k−1 − D21

k−1

(
Jk−1 + D11

k−1

)−1
D12

k−1 (k > 0)

where

D11

k−1
= −E

{
∇xk−1

[
∇xk−1

ln p(xk|xk−1)
]T

}

D21

k−1
= −E

{
∇xk−1

[∇xk
ln p(xk|xk−1)]T

}

D12

k−1
= −E

{
∇xk

[
∇xk−1

ln p(xk|xk−1)
]T

}
=

[
D21

k−1

]T

D22

k−1
= −E

{
∇xk

[∇xk
ln p(xk|xk−1)]T

}
− E

{
∇xk

[∇xk
ln p(zk|xk)]T

}



McMaster University 7

PCRLB for the KF

• For the LG case, information matrices

D11
k−1 = F T

k−1Q
−1
k−1Fk−1

D12
k−1 = [D21

k−1]
T = −F T

k−1Q
−1
k−1

D22
k−1 = Q−1

k−1 + HT
k R−1

k Hk

• Hence we get the Fisher information matrix at time k as

Jk = Q−1
k−1 − Q−1

k−1Fk−1

(
Jk−1 + F T

k−1Q
−1
k−1Fk−1

)−1
F T

k−1Q
−1
k−1 + Jz

k

=
(
Qk−1 + Fk−1J

−1
k−1F

T
k−1

)−1
+ HT

k R−1
k Hk

• Obtain the same when replacing Jk with P−1
k|k

⇒ KF is an efficient

estimator for a linear-Gaussian system.
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Credibility Check on Innovation Covariance

• Properties of innovation sequences

– zero-mean Gaussian

– uncorrelated.

• Define normalized innovation-squared (NIS):

ǫ(k) = νT
k S−1

k|k
νk

where the innovation and its covariance

νk = (zk − ẑk|k−1)

Sk|k−1 = cov(νk)

• Distribution of ǫ(k):

ǫ(k) ∼ χ2
m

where m is the measurement-vector dimension or the dof.
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Credibility Check ( Cont’d)

• Postulate the null hypothesis

H0 : E[ǫ(k)] = m.

• Accept both the innovation and its covariance commensurate with

theoretical results if

ǫ(k) ∈ [r1, r2]

• The acceptance interval [r1 r2] is determined such that

P (ǫ(k) ∈ [r1 r2]|H0) = 1 − α

where α is the level of significance.

• For α = 0.05, the limits

r1,2 ≈ 1

2m

(
± 1.96 +

√
2m − 1

)2
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Remarks

• For an unbiased estimator, the NIS check is directly comparable to

a credibility check on the innovation covariance.

• In an N Monte Carlo runs, we use the averaged NIS statistics.
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Credibility Check on Posterior Error Covariance

• Define normalized estimation error-squared (NEES):

ǫ(k) = x̃T
k P−1

k|k
x̃k

where the estimation error

x̃k = (xk − x̂k|k)

• Distribution of ǫ(k):

ǫ(k) ∼ χ2
n

where n is the state-vector dimension.

• Following a similar procedure as in the NIS case, we may check the

credibility of filter-estimated covariance at an α level.
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Extended Kalman Filters

• The EKF assumes the following dynamic state-space model:

Process equation: xk = f(xk−1) + vk−1 (1)

Measurement equation: zk = h(xk) + wk (2)

• Idea: Linearize nonlinear functions using the first-order Taylor

series expansion.

• Let x ∼ N (x̄,Σx). Then we write y, where y = f(x) as

y = f(x) ≈ f(x̄) + F (x − x̄)︸ ︷︷ ︸
linear

,

where the Jacobian

F = [∇xf(x)T ]Tx=x̄.
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EKF (Cont’d)

• Approximates y to be Gaussian with the following mean and

covariance:

ȳ = E(f(x))

≈ f(x̄)

Σy ≈ FΣxF T .
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Final Remarks

• For a nonlinear system, all conditional densities are non-Gaussian.

However all the above methods assume Gaussianity suggesting that

they wont fully characterize a nonlinear filter accuracy

• EKF estimate is biased ⇒ Pk|k < MSE

• To meet the condition of zero-mean error (unbiased mean error),

we subtract off mean errors before applying the NIS or NEES.

• In the EKF case, the information matrices of the CRLB are given
by:

D11

k−1
= E(F T

k−1
Q−1

k−1
Fk−1)

D12

k−1
= [D21

k−1
]T = −E(F T

k−1
)Q−1

k−1

D22

k−1
= Q−1

k−1
+ E(HT

k
R−1

k
Hk)

where F and H are Jacobians of the state and measurement

functions.

• The expectation operators are replaced by Monte Carlo averages
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(useful in simulations!)
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Thank you!



Q2. Discuss solution of ill-posed systems of
equations with regard to methods
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Well (ill)-Posed Problems

• The quality of solution depends on

– the problem itself and

– the computer

• According to Hadamard, a problem is well-posed if the solution

– exists

– is unique and

– depends continuously on the data (stable).

• Typically practical inverse problems are all ill-posed.

• Even well-posed problems may be unstable or ill-conditioned when

implemented in digital computers.
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Solutions for Linear Systems

• A linear system of equations in a matrix form:

Ax = b

where the coefficient matrix A ∈ R
m×n, the constant vector b ∈ R

m

and the variable vector x ∈ R
n.

• Suppose m = n. The solution

x̂ = A−1b

may be disastrous especially when n is large.

• Types of the solution:

– No solution

– Multiple solutions

• Solving methods: decompositions and regularization
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Cholesky Decomposition

• Suppose the matrix A is

– Symmetric and

– Positive definite

• Decompose A into a unique lower and upper triangular matrices:

A = LLT

• On the LHS, we have

Ax̂ = LLT x̂ = L(LT )x̂

• Solve by the forward and backward substitutions:

Ly = b

LT x̂ = y

• fast, stable and requires less space!
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Truncated SVD

• Decomposes any matrix A as

A = UDV T ,

where U and V are orthogonal matrices such that

UT U = V T V = I; D is diagonal with singular values of A.

• If A is non-singular, we write

A−1 = V Σ−1UT ,

where Σ−1 = [diag( 1
σi

)].
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Overdetermined Systems

• More equations than unknowns

• b does not lie in R(A) ⇒ No solution

• Yields the unique solution by minimizing the residual ||Ax − b||2.

• Using the SVD, we write

min ||Ax − b|| = min ||UΣV T − b||

= min ||ΣV T x − UT b||

= min ||Σv − b̃||,

where v = V T x and b̃ = UT b.

• The min. length solution for v is

v = Σ+b̃.
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• Hence

x̂ = V Σ+b̃ = V Σ+UT b.

• Summary:

– Compute the SVD of A : A = UΣV T

– Zero-out ‘small’ σi’s of Σ.

– Obtain

x̂ = V Σ+(UT b),

where Σ+ = [diag( 1
σi

)].
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Underdetermined Systems

• Effectively, fewer equations than unknowns

• b ∈ R(A) ⇒ Multiple solutions

• We may choose the smallest norm solution similarly to the

overdetermined case.

• Pros:

– Robust when A is singular or near singular

– Treats both the underdetermined and overdetermined systems

identically

• Cons:

– Computational more demanding.
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Regularized LS method

• To improves the stability, add regularization in the minimization:

x̂ = arg min ||Ax − b||2 + ||Γx||2

where Γ is the regularization matrix or Tikhonov matrix

• Regularized solution:

x̂ = (AT A + ΓT Γ)−1AT b

• Γ = 0 ⇒ Conventional LS solution.
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Choice of Γ Using the KF Theory

• Perceive the following to be the measurement equation:

bk = Axk + wk

• Suppose x̂k|k−1 ∼ N (0, σ2
xI), and wk ∼ N (0, σ2

b
I).

• Then the updated state:

x̂k|k = x̂k|k−1 + W (bk − b̂k|k−1)

x̂ = Wb

=
[
A

T (σ2

b
I)−1

A + (σ2

xI)−1
]−1

A
T (σ2

b
I)−1

b

=
1

σ2

b

[ 1

σ2

b

A
T

A +
1

σ2
x

I
]−1

A
T

b

=
[
A

T
A +

( σb

σx

)2I
]−1

A
T

b

• The above expression suggests to choose Γ to be Γ = αI, where

α = σb

σx
.
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Pseudo-inverses

• works well for full-rank matrix A.

• Case (i): Overdetermined systems

– Yields the unique solution in the minimum residual, ||Ax − b||

sense.

– Write

AT Ax̂ = AT b

– As AT A is non-singular, we get

x̂ = A+b,

where the pseudo-inverse matrix

A+ = (AT A)−1AT .
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Pseudo-inverse (Cont’d)

• Case (ii): Underdetermined systems

– Yields the unique solution in the smallest length, ||x|| sense:

x̂ = A+b,

where the pseudo-inverse matrix

A+ = AT (AAT )−1.

• Limitations:

– AT A may be singular or near-singular

– matrix-squared form may amplify roundoff errors !

– Remedy: Use the SVD on AT A or the QR on A directly.
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QR Decomposition in Pseudo-inverses

• Decompose A into

A = QR,

where R is upper triangular; Q is orthogonal such that QQT = I.

• For an overdetermined case,

x̂ = (AT A)−1AT b

= (RT QT QR)−1RT QT b

= (RT R)−1RT QT b = R−1QT b

⇒ Rx̂ = QT b
︸︷︷︸

rotate

• Use back substitution to get the stable solution.
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Thank you!



Q3. Derive the Wiener filter (non-causal) for a
stationary process with given spectral

characteristics
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Background

h(t)

WF
z(t)

x(t)

n(t)

x(t)
!

Figure 1: Signal Flow Diagram

• Goal: filter out noise that has corrupted a signal

• Assumptions:

– Additive noise

– signal and noise are wide-sense stationary processes

– Spectral characteristics are known a priori.

• Performance criteria: Minimum mean-square error (MMSE).
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Model setup

• The input-output relationship of the linear time-invariant system:

x̂(t) =

∫ t

−∞
h(τ)z(t − τ)dτ

= h(t) ∗ z(t)

where

– h(t) is the impulse response of the filter

– z(t) is the observed process and related to the unknown signal

process x(t) via

z(t) = x(t) + n(t)

where n(t) is the additive noise.

– x̂(t) is the output process.
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Non-causal Wiener Filtering

• Under non-causality, past and future observations are known;

hence the Wiener filter(WF) acts as a smoother.

• Redefine the goal to estimate

x̂(t) = E[x(t)|z(ξ),−∞ < ξ < ∞] (1)

• The WF minimizes the MSE function:

J = E[
(

x(t) − x̂(t)
)2

]

= E[(x(t) −
∫ ∞
−∞ h(α)z(t − α)dα)2]

• Solve the above minimization problem using the orthogonality

principle.
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Orthogonality Principle

Observation

subspace {z(i)} 

x(t)

x(t)
!

e(t) = x(t) – x(t)
!

Figure 2: Projection of signal onto the observation subspace

• Idea: To get the minimum error in the MSE sense, the observation

subspace has to be orthogonal to the estimation-error subspace.
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Orthogonality Principle (Cont’d)

• Using the orthogonality principle we have

E
[

(x(t) − x̂(t))z(t − τ)
]

= 0

E
[

{x(t) −
∫

∞

−∞
h(α)z(t − α)dα}z(t − τ)

]

= 0

E[x(t)z(t − τ)] −
∫

∞

−∞
h(α)E[z(t − α)z(t − τ)]dα = 0

⇒ Rxz(τ) =

∫

∞

−∞

h(α)E[z(t − α)z(t − τ)]dα.

• Substituting t = ξ + τ yields

RHS =

∫

∞

−∞

h(α)E[z(ξ + τ − α)z(ξ)]dα

=

∫

∞

−∞

h(α)Rz(τ − α)dα

= h(τ) ∗ Rz(τ)

• Hence, we get the cross-correlation function:

Rxz(τ) = h(τ) ∗ Rz(τ)
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Orthogonality (Cont’d)

• Taking the FT yields the cross-power spectral density:

Sxz(ω) = H(ω)Sz(ω) (2)

• The transfer function of the WF

H(ω) =
Sxz(ω)

Sz(ω)
(3)

• Further assumptions:

– x(t) and n(t) are independent stochastic processes ⇒ zero

cross-correlation.

– n(t) has zero-mean.

• Under this assumption, we have

– Rxz(τ) = Rx(τ)

– Rz(τ) = Rx(τ) + Rn(τ)
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Orthogonality Principle (Cont’d)

• Equivalently, taking the FT yields

– Sxz(ω) = Sx(ω)

– Sz(ω) = Sx(ω) + Sn(ω)

• A simplified transfer function of the WF

H(ω) =
Sx(ω)

Sx(ω) + Sn(ω)
(4)

• Interesting Observations:

– The transfer function is non-zero only where the signal has

power content.

– H(ω) = 1
1+ 1

Sx(ω)
Sn(ω)

⇒ emphasizes frequencies where the SNR is

large.
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Wiener Filter: Block Diagram

Figure 3: Time Domain

Figure 4: Frequency Domain
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Toy Example

W
-W

• Known. Rx(τ) = sin(Wτ)
Wτ

with W = 5 × 103; Sn(ω) = 10−5

• Find Sx(ω):

Sx(ω) =
1

2W

∏

(
2πω

W
)

• Find H(ω):

H(ω) =







1
1.1 , |ω| ≤ W ;

0, otherwise.

• WF acts as an ideal LPF.
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Final Remarks

• WF is applied in image restoration.

• WF has the following limitations:

– Not amenable to state-vector estimation problems

– Not applicable to non-stationary signals

– Non-causal WFs are not suitable for real-time applications
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Thank you!


